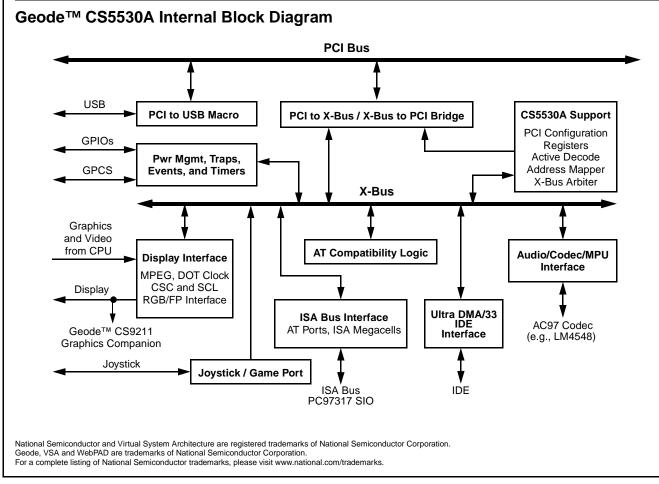
May 2001 Revision 1.1

Geode[™] CS5530A I/O Companion Multi-Function South Bridge


General Description

The CS5530A I/O companion is designed to work in conjunction with a GX-series processor (i.e., GX1, GXLV, GXm); all members of the National Semiconductor[®] GeodeTM family of products. Together, the Geode processor and CS5530A provide a system-level solution well suited for the high performance needs of a host of devices which include digital set-top boxes and thin client devices. Due to the low power consumption of the GX-series processors, this solution satisfies the needs of battery powered devices such as National's WebPADTM system, and thermal design is eased allowing for fanless system design.

The CS5530A I/O companion is a PCI-to-ISA bridge (South Bridge), ACPI-compliant chipset that provides AT/ISA style functionality. The device contains state-of-the-art power management that enables systems, especially battery powered systems, to significantly reduce power consumption.

Audio is supported through PCI bus master engines which connect to an AC97 compatible codec such as the National Semiconductor LM4548. If industry standard audio is required, a combination of hardware and software called Virtual System Architecture[®] (VSATM) technology is provided.

The Geode GX-series processors' graphics/video output is connected to the CS5530A. The CS5530A graphics/video support includes a PLL that generates the DOT clock for the GX-series processors (where the graphics controller is located), video acceleration hardware, gamma RAM plus three DACs for RGB output to CRT, and digital RGB that can be directly connected to TFT panels or NTSC/PAL encoders. The digital RGB output can also be connected to the National Semiconductor Geode CS9211 graphics companion (a flat panel display controller) for DSTN panel support.

Two bus mastering IDE controllers are included for support of up to four ATA-compliant devices. A two-port Universal Serial Bus (USB) provides high speed, Plug & Play expansion for a variety of consumer peripheral devices such as a keyboard, mouse, printer, and digital camera. If additional functions are required like real-time clock, floppy disk, PS2 keyboard, and PS2 mouse, a SuperI/O such as the National PC97317 can be easily connected to the CS5530A.

Features

General Features

- Designed for use with National's Geode GX-series processors
- 352 PBGA (Plastic Ball Grid Array) package
- 3.3V or 5.0V PCI bus compatible
- 5.0V tolerant on all inputs
- 3.3V core

PCI-to-ISA Bridge

- PCI 2.1 compliant
- Supports PCI initiator-to-ISA and ISA master-to-PCI cycle translations
- PCI master for audio I/O and IDE controllers
- Subtractive agent for unclaimed transactions
- PCI-to-ISA interrupt mapper/translator

AT Compatibility

- Two 8259A-equivalent interrupt controllers
- 8254-equivalent timer
- Two 8237-equivalent DMA controllers
- Boot ROM and keyboard chip select
- Extended ROM to 16 MB

Bus Mastering IDE Controllers

- Two controllers with support for up to four IDE devices
- Independent timing for master and slave devices for both channels
- PCI bus master burst reads and writes
- Ultra DMA/33 (ATA-4) support
- Multiword DMA support
- Programmed I/O (PIO) Modes 0-4 support

Power Management

- Intelligent system controller supports multiple power management standards:
 - Full ACPI and Legacy (APM) support
 - Directly manages all GX-series processors' power states (including automatic Suspend modulation for optimal performance/thermal balancing)
- I/O traps and idle timers for peripheral power management
- Up to eight GPIOs for system control:
 All eight are configurable as external wakeup events
- Dedicated inputs for keyboard and mouse wakeup events

XpressAUDIO

- Provides "back-end" hardware support via six buffered PCI bus masters
- AC97 codec interface:
 - Specification Revision 1.3, 2.0, and 2.1 compliant interface. Note that the codec (e.g., LM4548) must have SRC (sample rate conversion) support

Display Subsystem Extensions

- Complements the GX-series processors' graphics and video capabilities:
 - Three independent line buffers for accelerating video data streams
 - Handles asynchronous video and graphics data streams concurrently from the processor
 - YUV to RGB conversion hardware
 - Arbitrary X & Y interpolative scaling
 - Color keying for graphics/video overlay
- VDACs / Display interface:
 - Three integrated DACs
 - Gamma RAM:
 - Provides gamma correction for graphics data streams
 - Provides brightness/contrast correction for video data streams
 - Integrated DOT clock generator
 - Digital RGB interface drives TFT panels or standard NTSC/PAL encoders
 - Up to 1280x1024 @ 85 Hz

Universal Serial Bus

- Two independent USB interfaces:
 - Open Host Controller Interface (OpenHCI) specification compliant
 - Second generation proven core design

Geode[™] CS5530A

Table of Contents

1.0	Arch	itecture	e Overview
	1.1	PCI BUS	S INTERFACE
	1.2		S INTERFACE
	1.3		/PATIBILITY LOGIC
	1.0	1.3.1	DMA Controller
		1.3.1	Programmable Interval Timer
		1.3.3	Programmable Interrupt Controller
	1.4		NTROLLERS
	1.4		R MANAGEMENT
	1.5	-	
		1.5.1	GPIO Interface
	1.6	-	SAUDIO
		1.6.1	AC97 Codec Interface
		1.6.2	VSA Technology Support Hardware9
	1.7		Y SUBSYSTEM EXTENSIONS10
	1.8		GENERATION11
	1.9	UNIVEF	RSAL SERIAL BUS
	1.10	PROCE	SSOR SUPPORT
2.0	Sian	al Dofin	nitions
2.0	2.1		SIGNMENTS
	2.2		DESCRIPTIONS
		2.2.1	Reset Interface
		2.2.2	Clock Interface
		2.2.3	CPU Interface
		2.2.4	PCI Interface
		2.2.5	ISA Bus Interface
		2.2.6	ROM Interface
		2.2.7	IDE Interface
		2.2.8	USB Interface
		2.2.9	
		2.2.10	Audio Interface
		2.2.11	Display Interface
		2.2.12	DCLK PLL
		2.2.13 2.2.14	Power, Ground, and No Connects 40 Internal Test and Measurement 40
		2.2.14	
3.0	Fund	ctional [Description
	3.1	PROCE	SSOR INTERFACE
		3.1.1	Display Subsystem Connections
		3.1.2	PSERIAL Pin Interface
			3.1.2.1 Video Retrace Interrupt
	3.2	PCI BUS	S INTERFACE
		3.2.1	PCI Initiator
		3.2.2	PCI Target
		3.2.3	Special Bus Cycles–Shutdown/Halt
		3.2.4	PCI Bus Parity
		3.2.5	PCI Interrupt Routing Support
		3.2.6	Delayed Transactions

Table of Contents (Continued)

3.3	RESET	TS AND CLOCKS
	3.3.1	Resets
	3.3.2	ISA Clock
	3.3.3	DOT Clock
		3.3.3.1 DCLK Programming
3.4	POWE	R MANAGEMENT
	3.4.1	CPU Power Management
	0.1.1	3.4.1.1 On
		3.4.1.2 Active Idle
		3.4.1.3 Suspend
		3.4.1.4 3 Volt Suspend
		3.4.1.5 Off
		3.4.1.6 Suspend Modulation
		3.4.1.7 Save-to-Disk/Save-to-RAM
	3.4.2	APM Support
	3.4.3	Peripheral Power Management63
		3.4.3.1 Device Idle Timers and Traps
		3.4.3.2 General Purpose Timers
		3.4.3.3 ACPI Timer Register
		3.4.3.4 General Purpose I/O Pins.
		3.4.3.6 Device Power Management Register Programming Summary
3.5		COMPATIBILITY LOGIC
5.5		
	3.5.1	ISA Subtractive Decode
	3.5.2	ISA Bus Interface
		3.5.2.1 Delayed PCI Transactions
		3.5.2.2Limited ISA and ISA Master Modes903.5.2.3ISA Bus Data Steering92
		3.5.2.4 I/O Recovery Delays
		3.5.2.5 ISA DMA
	3.5.3	ROM Interface
	3.5.4	Megacells
	0.011	3.5.4.1 Direct Memory Access (DMA)
		3.5.4.2 Programmable Interval Timer
		3.5.4.3 Programmable Interrupt Controller
		3.5.4.4 PCI Compatible Interrupts
	3.5.5	I/O Ports 092h and 061h System Control103
		3.5.5.1 I/O Port 092h System Control104
		3.5.5.2 I/O Port 061h System Control
		3.5.5.3 SMI Generation for NMI
	3.5.6	Keyboard Interface Function
		3.5.6.1 Fast Keyboard Gate Address 20 and CPU Reset
	3.5.7	External Real-Time Clock Interface
3.6	IDE CO	ONTROLLER 108
	3.6.1	IDE Interface Signals
	3.6.2	IDE Configuration Registers
		3.6.2.1 PIO Mode
		3.6.2.2 Bus Master Mode
		3.6.2.3 Ultra DMA/33 Mode114

GeodeTM CS5530A

Table of Contents (Continued)

	3.7	XPRES	SAUDIO
		3.7.1	Subsystem Data Transport Hardware116
			3.7.1.1 Audio Bus Masters
			3.7.1.2 Physical Region Descriptor Table Address119
			3.7.1.3 Physical Region Descriptor Format
			3.7.1.4 Programming Model 120 3.7.1.5 AC97 Codec Interface 121
		3.7.2	VSA Technology Support Hardware
		0.7.2	3.7.2.1 VSA Technology
			3.7.2.2 Audio SMI Related Registers
			3.7.2.3 IRQ Configuration Registers
	3.8	DISPLA	AY SUBSYSTEM EXTENSIONS
		3.8.1	Video Interface Configuration Registers
		3.8.2	Video Accelerator
			3.8.2.1 Line Buffers
			3.8.2.2 Video Port Protocol
			3.8.2.3 Video Format 133 3.8.2.4 X and Y Scaler / Filter 134
			3.8.2.4 X and Y Scaler / Filter. 134 3.8.2.5 Color-Space-Converter. 134
		3.8.3	Video Overlay
		3.8.4	Gamma RAM
		3.8.5	Display Interface
			3.8.5.1 Video DACs
			3.8.5.2 VESA DDC2B / DPMS
			3.8.5.3 Flat Panel Support
	3.9	UNIVE	RSAL SERIAL BUS SUPPORT138
		3.9.1	USB PCI Controller
		3.9.2	USB Host Controller
		3.9.3	USB Power Management
4.0	Pogi	etor Do	escriptions
4.0	-		NFIGURATION SPACE AND ACCESS METHODS
	4.1		
	4.2		TER SUMMARY
	4.3		ET REGISTER SPACE
		4.3.1	Bridge Configuration Registers - Function 0
		4.3.2	SMI Status and ACPI Timer Registers - Function 1
		4.3.3	IDE Controller Registers - Function 2
		4.3.4	XpressAUDIO Registers - Function 3
		4.3.5	Video Controller Registers - Function 4
	4.4		EGISTERS
	4.5		DA ISA LEGACY I/O REGISTER SPACE
	4.6	V-ACPI	I/O REGISTER SPACE

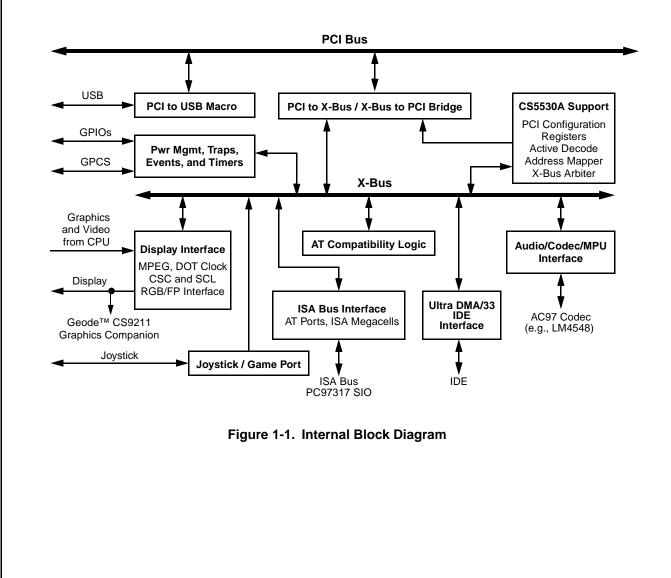
Table of Contents (Continued)

5.0	Elect	trical Specifications
	5.1	ELECTRICAL CONNECTIONS
		5.1.1 Pull-Up Resistors
		5.1.2 Unused Input Pins
		5.1.3 NC-Designated Pins
		5.1.4 Power/Ground Connections and Decoupling
	5.2	ABSOLUTE MAXIMUM RATINGS
	5.3	OPERATING CONDITIONS
	5.4	DC CHARACTERISTICS
		5.4.1 Definition of System Conditions for Measuring "On" Parameters
	5.5	AC CHARACTERISTICS
	5.6	DISPLAY CHARACTERISTICS
6.0	Test	Mode Information
	6.1	NAND TREE TEST MODE
	6.2	I/O TEST
7.0	Phys	sical Dimensions
Арре	endix	••
	A.1	REVISION HISTORY

Geode[™] CS5530A

1.0 Architecture Overview

The Geode CS5530A can be described as providing the functional blocks shown in Figure 1-1.


- PCI bus master/slave interface
- ISA bus interface
- AT compatibility logic
- IDE controllers
- Power management
 - GPIO interfaces
 - Traps, Events, Timers
- Joystick/Game Port interface
- Virtual audio support hardware
- Video display, which includes MPEG accelerator, RAMDAC, and video ports
- USB controller

For CPU interface connection refer to Figure 1-5 "Example System Block Diagram" on page 12.

1.1 PCI BUS INTERFACE

The CS5530A provides a PCI bus interface that is both a slave for PCI cycles initiated by the CPU or other PCI master devices, and a non-preemptable master for DMA transfer cycles. The chip also is a standard PCI master for the IDE controllers and audio I/O logic. The CS5530A supports positive decode for configurable memory and I/O regions and implements a subtractive decode option for unclaimed PCI accesses. The CS5530A also generates address and data parity and performs parity checking. The CS5530A does not include the PCI bus arbiter, which is located in the processor.

Configuration registers are accessed through the PCI interface using the PCI Bus Type 1 configuration mechanism as described in the PCI 2.1 Specification.

1.2 ISA BUS INTERFACE

The CS5530A provides an ISA bus interface for unclaimed memory and I/O cycles on PCI. The CS5530A is the default subtractive decoding agent and forwards all unclaimed memory and I/O cycles to the ISA interface; however, the CS5530A may be configured to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled).

The CS5530A supports two modes on the ISA interface. The default mode, Limited ISA Mode, supports the full memory and I/O address range without ISA mastering. The address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPIO[7:4].

The second mode, ISA Master Mode, supports ISA bus masters and requires no external circuitry. When the CS5530A is placed in ISA Master Mode, a large number of pins are redefined. In this mode, the CS5530A cannot support TFT flat panels or TV controllers since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

For further information regarding mode selection and operational details refer to Section 3.5.2.2 "Limited ISA and ISA Master Modes" on page 90.

1.3 AT COMPATIBILITY LOGIC

The CS5530A integrates:

- Two 8237-equivalent DMA controllers with full 32-bit addressing
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts
- An 8254-equivalent timer for refresh, timer, and speaker logic
- NMI control and generation for PCI system errors and all parity errors
- Support for standard AT keyboard controllers
- Positive decode for the AT I/O register space
- Reset control

1.3.1 DMA Controller

The CS5530A supports the industry standard DMA architecture using two 8237-compatible DMA controllers in cascaded configuration. CS5530A-supported DMA functions include:

- Standard seven-channel DMA support
- 32-bit address range support via high page registers
- IOCHRDY extended cycles for compatible timing transfers
- ISA bus master device support using cascade mode

1.3.2 Programmable Interval Timer

The CS5530A contains an 8254-equivalent programmable interval timer. This device has three timers, each with an input frequency of 1.193 MHz.

1.3.3 Programmable Interrupt Controller

The CS5530A contains two 8259-equivalent programmable interrupt controllers (PICs), with eight interrupt request lines each, for a total of 16 interrupts. The two controllers are cascaded internally, and two of the interrupt request inputs are connected to the internal circuitry. This allows a total of 13 externally available interrupt requests.

Each CS5530A IRQ signal can be individually selected as edge- or level-sensitive. The PCI interrupt signals are routed internally to the PICs IRQs.

1.4 IDE CONTROLLERS

The CS5530A integrates two PCI bus mastering, ATA-4 compatible IDE controllers. These controllers support Ultra DMA/33 (enabled in Microsoft Windows 95 and Windows NT by using a driver provided by National Semiconductor), Multiword DMA, and Programmed I/O (PIO) modes. Two devices are supported on each controller. The data-transfer speed for each device on each controller can be independently programmed. This allows high-speed IDE peripherals to coexist on the same channel as lower speed devices. Faster devices must be ATA-4 compatible.

1.5 POWER MANAGEMENT

The CS5530A integrates advanced power management features including:

- Idle timers for common system peripherals
- Address trap registers for programmable address ranges for I/O or memory accesses
- Up to eight programmable GPIOs
- Clock throttling with automatic speedup for the CPU clock
- Software CPU stop clock
- Save-to-Disk/RAM with peripheral shadow registers
- Dedicated serial bus to/from the GX-series processor providing CPU power management status

The CS5530A is an ACPI (Advanced Control and Power Interface) compliant chipset. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the ACPI specification. The "Fixed Feature" and "General Purpose" registers are virtual. They are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI compliant operating system, the SMI-base virtualization is transparent; however, to eliminate unnecessary latencies, the ACPI timer exists in physical hardware.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs.
- General Purpose Events Fully programmable GPE0
 Event Block registers.

1.5.1 GPIO Interface

Eight GPIO pins are provided for general usage in the system. GPIO[3:0] are dedicated pins and can be configured as inputs or outputs. GPIO[7:4] can be configured as the upper addresses of the ISA bus, SA[23:20]. All GPIOs can also be configured to generate an SMI on input edge transitions.

1.6 XPRESSAUDIO

XpressAUDIO in the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. XpressAUDIO uses VSA technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.


The hardware portion of the XpressAUDIO subsystem can broadly be divided into two categories. Hardware for:

- Transporting streaming audio data to/from the system memory and an AC97 codec.
- VSA technology support.

1.6.1 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec which supports an independent input and output sample rate conversion interface (e.g., National Semiconductor LM4548) can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation. Figure 1-2 shows the codec and CS5530A signal connections. For specifics on the serial interface, refer to the appropriate codec manufacturer's data sheet.

Low latency audio I/O is accomplished by a buffered PCI bus mastering controller.

1.6.2 VSA Technology Support Hardware

The CS5530A I/O companion incorporates the required hardware in order to support VSA technology for the capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

1.7 DISPLAY SUBSYSTEM EXTENSIONS

The CS5530A incorporates extensions to the GX-series processor's display subsystem. These include:

- Video Accelerator
 - Buffers and formats input YUV video data from the processor
 - 8-bit interface to the processor
 - X & Y scaler with bilinear filter
 - Color space converter (YUV to RGB)

Video Overlay Logic

- Color key
- Data switch for graphics and video data

- Gamma RAM
 Brightness and contrast control
- Display Interface

 Integrated RGB Video DACs
 VESA DDC2B/DPMS support
 - Flat panel interface

Figure 1-3 shows the data path of the display subsystem extensions.

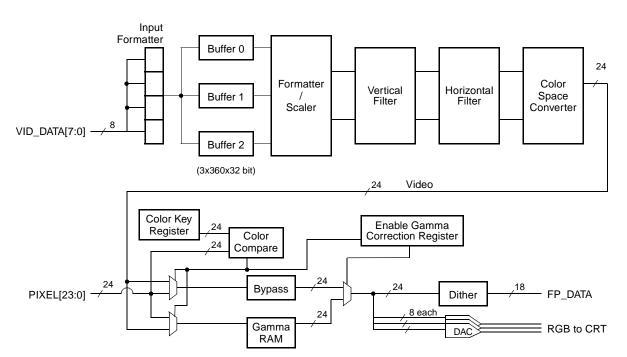


Figure 1-3. 8-Bit Display Subsystem Extensions

1.8 CLOCK GENERATION

In a CS5530A/GX-series processor based system, the CS5530A generates only the video DOT clock (DCLK) for the CPU and the ISA clock. All other clocks are generated by an external clock chip.

The ISACLK is created by dividing the PCICLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0].

DCLK is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DCLK. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. For applications that do not use the GX-series processor's graphics subsystem, this is an available clock for general purpose use.

Figure 1-4 shows a block diagram for clock generation within the CS5530A.

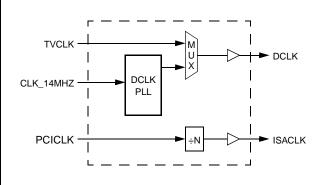
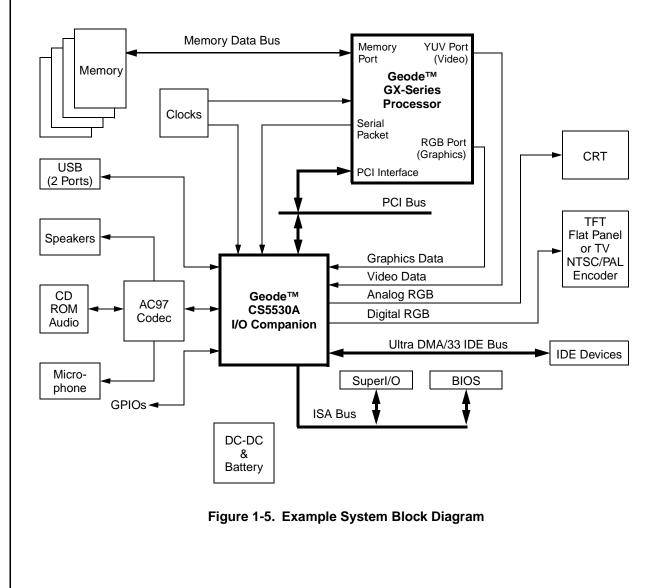


Figure 1-4. CS5530A Clock Generation

1.9 UNIVERSAL SERIAL BUS

The CS5530A provides two complete, independent USB ports. Each port has a Data "--" and a Data "+" pin.

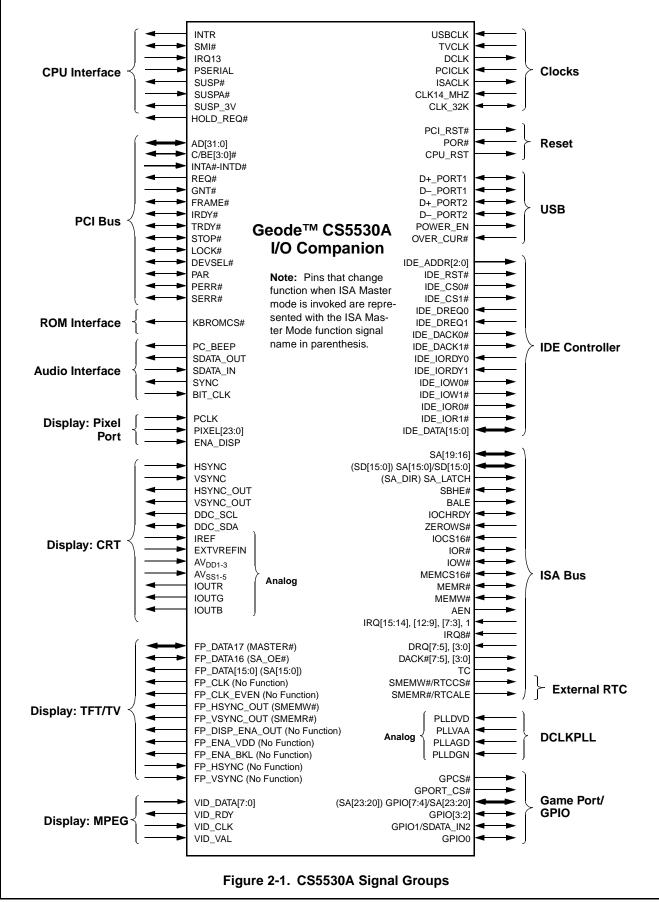

The USB controller is a compliant Open Host Controller Interface (OpenHCI). The OpenHCI specification provides a register-level description for a host controller, as well as a common industry hardware/software interface and drivers (see OpenHCI Specification, Revision 1.0, for description).

1.10 PROCESSOR SUPPORT

The traditional south bridge functionality included in the CS5530A I/O companion chip has been designed to support the GX-series of processors. When combined with a GX-series processor, the CS5530A provides a bridge which supports a standard ISA bus and system ROM. As part of the video subsystem, the CS5530A provides MPEG video acceleration and a digital RGB interface, to allow direct connection to TFT LCD panels. This chip also inte-

grates a gamma RAM and three DACs, allowing for direct connection of a CRT monitor. Figure 1-5 shows a typical system block diagram.

For detailed information regarding processor signal connections refer to Section 3.1 "Processor Interface" on page 42.



Geode[™] CS5530A

2.0 Signal Definitions

This section defines the signals and describes the external interface of the Geode CS5530A. Figure 2-1 shows the

pins organized by their functional groupings (internal test and electrical pins are not shown).

2.1 PIN ASSIGNMENTS

The tables in this section use several common abbreviations. Table 2-1 lists the mnemonics and their meanings.

Figure 2-2 shows the pin assignment for the CS5530A with Tables 2-2 and 2-3 listing the pin assignments sorted by pin number and alphabetically by signal name, respectively.

In Section 2.2 "Signal Descriptions" on page 23 a description of each signal within its associated functional group is provided.

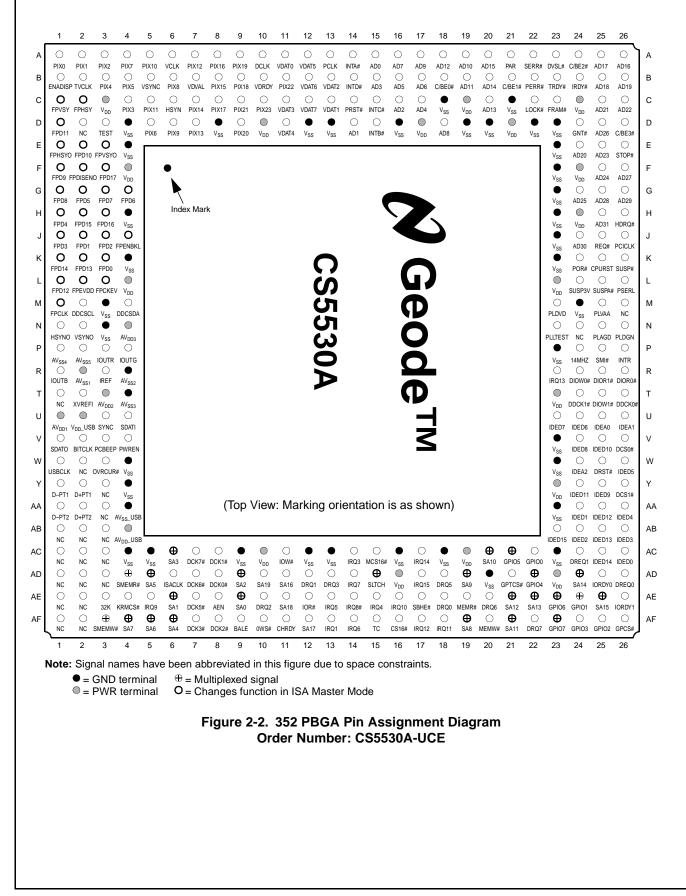

In the signal definitions, references to F0-F4, F1BAR, F2BAR, F3BAR, F4BAR, and PCIUSB are made. These terms relate to designated register spaces. Refer to Table 4-1 "PCI Configuration Address Register (0CF8h)" on page 141 for details regarding these register spaces and their access mechanisms.

Table 2-1.	Pin Type	Definitions
------------	----------	-------------

Mnemonic	Definition
I	Input pin ¹
I/O	Bidirectional pin ^{1,2}
0	Output pin ^{1, 2}
OD	Open-drain output structure that allows multiple devices to share the pin in a wired-OR configuration
PU	Pull-up resistor
SMT	Schmitt Trigger
V _{DD} (PWR)	Power pin
V _{SS} (GND)	Ground pin
#	The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name, the signal is asserted when at a high volt- age level.

1. All buffers are 5 volt tolerant.

2. All digital bidirectional and output pins can be TRI-STATE signals unless a weak pull-up is enabled.

GeodeTM CS5530A

Signal Definitions (Continued)

Table 2-2. 352 PBGA Pin Assignments - Sorted by Pin Number

	Signal Name	
Pin No.	Limited ISA Mode	ISA Master Mode
A1	PIXEL0	
A2	PIXEL1	
A3	PIXEL2	
A4	PIXEL7	
A5	PIXEL10	
A6	VID_CLK	
A7	PIXEL12	
A8	PIXEL16	
A9	PIXEL19	
A10	DCLK	
A11	VID_DATA0	
A12	VID_DATA5	
A13	PCLK	
A14	INTA#	
A14	AD0	
A15	AD7	
A10	AD9	
A17 A18	AD9 AD12	
A19	AD10	
A20	AD15	
A21	PAR	
A22	SERR#	
A23	DEVSEL#	
A24	C/BE2#	
A25	AD17	
A26	AD16	
B1	ENA_DISP	
B2	TVCLK	
B3	PIXEL4	
B4	PIXEL5	
B5	VSYNC	
B6	PIXEL8	
B7	VID_VAL	
B8	PIXEL15	
B9	PIXEL18	
B10	VID_RDY	
B11	PIXEL22	
B12	VID_DATA6	
B13	VID_DATA2	
B14	INTD#	
B15	AD3	
B16	AD5	
B17	AD6	
B18	C/BE0#	
B19	AD11	
B20	AD14	
B21	C/BE1#	
B22	PERR#	
B23	TRDY#	
B24	IRDY#	
B25	AD18	

	Signal Name		
Pin	Limited	ISA Master	
No.	ISA Mode	Mode	
B26	AD19		
C1	FP_VSYNC	No Function	
C2	FP_HSYNC	No Function	
C3	V _{DD}		
C4	PIXEL3		
C5	PIXEL11		
C6	HSYNC		
C7	PIXEL14		
C8	PIXEL17		
C9	PIXEL21		
C10	PIXEL23		
C11	VID_DATA3		
C12	VID_DATA7		
C13	VID_DATA1		
C14	PCI_RST#		
C15	INTC#		
C16	AD2		
C17	AD4		
C18	V _{SS}		
C19	V _{DD}		
C20	AD13		
C21	V _{SS}		
C22	LOCK#		
C23	FRAME#		
C24	V _{DD}		
C25	AD21		
C26	AD22		
D1	FP_DATA11	SA11	
D2	NC		
D3	TEST		
D4	V _{SS}		
D5	PIXEL6		
D6	PIXEL9		
D7	PIXEL13		
D8	V _{SS}		
D9	PIXEL20		
D10	V _{DD}		
D11	VID_DATA4		
D12	V _{SS}		
D13	V _{SS}		
D14	AD1		
D15	INTB#		
D16	V _{SS}		
D17	V _{DD}		
D18	AD8		
D19	V _{SS}		
D20	V _{SS}		
	V _{SS} V _{DD}		
D21			
D21 D22			
D21 D22 D23	V _{SS} V _{SS}		

	Signal Name		
Pin No.	Limited ISA Maste ISA Mode Mode		
D25	AD26		
D26	C/BE3#		
E1	FP_HSYNC_OUT	SMEMW#	
E2	FP_DATA10	SA10	
E2 E3	FP_VSYNC_OUT	SMEMR#	
E3 E4		SIVIEIVIR#	
	V _{SS}		
E23	V _{SS}		
E24	AD20		
E25	AD23		
E26	STOP#		
F1	FP_DATA9	SA9	
F2	FP_DISP_ENA_OUT	No Function	
F3	FP_DATA17	MASTER#	
F4	V _{DD}		
F23	V _{SS}		
F24	V _{DD}		
F25	AD24		
F26	AD27		
G1	FP_DATA8	SA8	
G2	FP_DATA5	SA5	
G3	FP_DATA7	SA7	
G4	FP_DATA6	SA6	
G23	V _{SS}		
G24	AD25		
G25	AD28		
G26	AD29		
H1	FP DATA4	SA4	
H2	FP DATA15	SA15	
H3	 FP_DATA16	SA_OE#	
H4	V _{SS}		
H23	V _{SS}		
H24	V _{DD}		
H25	AD31		
	HOLD_REQ#	642	
J1	FP_DATA3	SA3	
J2	FP_DATA1	SA1	
J3	FP_DATA2	SA2	
J4	FP_ENA_BKL	No Function	
J23	V _{SS}		
J24	AD30		
J25	REQ#		
J26	PCICLK	1	
K1	FP_DATA14	SA14	
K2	FP_DATA13	SA13	
K3	FP_DATA0	SA0	
K4	V _{SS}		
K23	V _{SS}		
K24	POR#		
K25	CPU_RST		
K26	SUSP#		
L1	FP_DATA12	SA12	

Table 2-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name	
Pin No.	Limited ISA Mode	ISA Master Mode
L2	FP_ENA_VDD	No Function
L3	FP_CLK_EVEN	No Function
L4	V _{DD}	
L23	V _{DD}	
L24	SUSP_3V	
L25	SUSPA#	
L26	PSERIAL	
M1	FP_CLK	No Function
M2	DDC_SCL	
М3	V _{SS}	
M4	DDC_SDA	
M23	PLLDVD	
M24	V _{SS}	
M25	PLLVAA	
M26	NC	
N1	HSYNC_OUT	
N2	VSYNC_OUT	
N3	V _{SS}	
N4	AV _{DD3} (DAC)	
N23	PLLTEST	
N24	NC	
N25	PLLAGD	
N26	PLLDGN	
P1	AV _{SS4} (ICAP)	
P2	AV _{SS5} (DAC)	
P3	IOUTR	
P4	IOUTG	
P23	V _{SS}	
P24	CLK_14MHZ	
P25	SMI#	
P26	INTR	
R1	IOUTB	
R2	AV _{SS1} (DAC)	
R3	IREF	
R4	AV _{SS2} (ICAP)	
R23	IRQ13	
R24	IDE_IOW0#	
R25	IDE_IOR1#	
R26	IDE_IOR0#	
T1	NC	
T2	EXTVREFIN	
T3	AV _{DD2} (VREF)	
T4	AV _{SS3} (VREF)	
T23	V _{DD}	
T24	IDE_DACK1#	
T25	IDE_IOW1#	
T26	IDE_DACK0#	
U1	AV _{DD1} (DAC)	
U2	V _{DD} USB	
U3	SYNC	
U3	SDATA_IN	
04	SDAIA_IN	

	Signal Name		
Pin No.	Limited ISA Mode	ISA Master Mode	
U23	IDE_DATA7		
U24	IDE_DATA6		
U25	IDE_ADDR0		
U26			
V1	SDATA_OUT		
V2	BIT_CLK		
V3	PC_BEEP		
V4	POWER_EN		
V23	V _{SS}		
V24	IDE_DATA8		
V25	IDE_DATA10		
V26			
W1	USBCLK		
W2	NC		
W3	OVER_CUR#		
W4	_		
W23	V _{SS}		
W23	IDE_ADDR2		
W24	IDE_RST#		
W26	IDE_DATA5		
Y120	DPORT1		
Y2	D+_PORT1		
Y3	NC		
Y4	-		
	V _{SS}		
Y23			
Y24	IDE_DATA11		
Y25	IDE_DATA9		
Y26	IDE_CS1#		
AA1	DPORT2		
AA2	D+_PORT2		
AA3	NC		
AA4	AV _{SS} _USB		
AA23			
AA24	IDE_DATA1		
AA25	IDE_DATA12		
AA26	IDE_DATA4		
AB1	NC		
AB2	NC		
AB3	NC		
AB4	AV _{DD} USB		
AB23	IDE_DATA15		
AB24	IDE_DATA2		
AB25	IDE_DATA13		
AB26	IDE_DATA3		
AC1	NC		
AC2	NC		
AC3	NC		
AC4	V _{SS}		
AC5	V _{SS}		
AC6	SA3/SD3	SD3	
AC7	DACK7#	-	

nber (C	Continued)		
	Signal Name		
Pin No.	Limited ISA Mode	ISA Master Mode	
AC8	DACK1#		
AC9	V _{SS}		
AC10	V _{DD}		
AC11	IOW#		
AC12	V _{SS}		
AC13	V _{SS}		
AC14	IRQ3		
AC15	MEMCS16#		
AC16	V _{SS}		
AC17	IRQ14		
AC18	V _{SS}		
AC19	V _{DD}	r	
AC20	SA10/SD10	SD10	
AC21	GPIO5/SA21	SA21	
AC22	GPIO0		
AC23	V _{SS}		
AC24	IDE_DREQ1		
AC25	IDE_DATA14		
AC26	IDE_DATA0		
AD1	NC		
AD2	NC		
AD3	NC		
AD4	SMEMR#/RTCALE		
AD5	SA5/SD5	SD5	
AD6	ISACLK		
AD7	DACK6#		
AD8	DACK0#		
AD9	SA2/SD2	SD2	
AD10	SA19		
AD11	SA16		
AD12	DRQ1		
AD13	DRQ3		
AD14	IRQ7		
AD15	SA_LATCH	SA_DIR	
AD16	V _{DD}		
AD17	IRQ15		
AD18	DRQ5	1	
AD19	SA9/SD9	SD9	
AD20	V _{SS}		
AD21	GPORT_CS#	1	
AD22	GPIO4/SA20	SA20	
AD23	V _{DD}	1	
AD24	SA14/SD14	SD14	
AD25	IDE_IORDY0		
AD26	IDE_DREQ0		
AE1	NC		
AE2	NC		
AE3	CLK_32K		
AE4	KBROMCS#		
AE5	IRQ9		
AE6	SA1/SD1	SD1	

Table 2-2. 352 PBGA Pin Assignments - Sorted by Pin Number (Continued)

	Signal Name			
Pin No.	Limited ISA Ma ISA Mode Mod			
AE7	DACK5#			
AE8	AEN			
AE9	SA0/SD0	SD0		
AE10	DRQ2			
AE11	SA18			
AE12	IOR#			
AE13	IRQ5	IRQ5		
AE14	IRQ8#			
AE15	IRQ4			
AE16	IRQ10			
AE17	SBHE#			
AE18	DRQ0			
AE19	MEMR#			
AE20	DRQ6			
AE21	SA12/SD12	SD12		
AE22	SA13/SD13 SD13			

	Signal Name			
Pin No.	Limited ISA Mode	ISA Master Mode		
AE23	GPIO6/SA22	SD22		
AE24	GPIO1/SDATA_IN2			
AE25	SA15/SD15	SD15		
AE26	IDE_IORDY1			
AF1	NC			
AF2	NC			
AF3	SMEMW#/RTCCS#			
AF4	SA7/SD7	SD7		
AF5	SA6/SD6	SD6		
AF6	SA4/SD4	SD4		
AF7	DACK3#			
AF8	DACK2#			
AF9	BALE			
AF10	ZEROWS#			
AF11	IOCHRDY			
AF12	SA17			

	Signal Name			
Pin No.	Limited ISA Mas ISA Mode Mode			
AF13	IRQ1			
AF14	IRQ6			
AF15	TC			
AF16	IOCS16#			
AF17	IRQ12			
AF18	IRQ11			
AF19	SA8/SD8	SD8		
AF20	MEMW#			
AF21	SA11/SD11	SD11		
AF22	DRQ7			
AF23	GPIO7/SA23 SA23			
AF24	GPIO3			
AF25	GPIO2			
AF26	GPCS#			

GeodeTM CS5530A

Geode[™] CS5530A

Signal Definitions (Continued)

Table 2-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
AD0	4	I/O	PCI	A15
AD1		I/O	PCI	D14
AD2		I/O	PCI	C16
AD3		I/O	PCI	B15
AD4		I/O	PCI	C17
AD5		I/O	PCI	B16
AD6		I/O	PCI	B17
AD7		I/O	PCI	A16
AD8		I/O	PCI	D18
AD9		I/O	PCI	A17
AD10		I/O	PCI	A19
AD11		I/O	PCI	B19
AD12		I/O	PCI	A18
AD13		I/O	PCI	C20
AD14		I/O	PCI	B20
AD15		I/O	PCI	A20
AD16		I/O	PCI	A26
AD17		I/O	PCI	A25
AD18		I/O	PCI	B25
AD19		I/O	PCI	B26
AD20		I/O	PCI	E24
AD21		I/O	PCI	C25
AD22		I/O	PCI	C26
AD23		I/O	PCI	E25
AD24		I/O	PCI	F25
AD25		I/O	PCI	G24
AD26		I/O	PCI	D25
AD27		I/O	PCI	F26
AD28		I/O	PCI	G25
AD29		I/O	PCI	G26
AD30		I/O	PCI	J24
AD31		I/O	PCI	H25
AEN		0	8 mA	AE8
AV _{DD1} (DAC)		I, Analog		U1
AV _{DD2} (VREF)		I, Analog		Т3
AV _{DD3} (DAC)		I, Analog		N4
AV _{DD} _USB		PWR		AB4
AV _{SS1} (DAC)		I, Analog		R2
AV _{SS2} (ICAP)		I, Analog		R4
AV _{SS3} (VREF)		I, Analog		T4
AV _{SS4} (ICAP)		I, Analog		P1
AV _{SS5} (DAC)		I, Analog		P2
AV _{SS} _USB		GND		AA4
BALE		0	8 mA	AF9
BIT_CLK		1	8 mA	V2
C/BE0#		I/O	PCI	B18
C/BE1#		I/O	PCI	B21
C/BE2#		I/O	PCI	A24
C/BE3#	I/O	PCI	D26	
CLK_14MHZ		I (SMT)	CLK	P24
CLK_32K		I/O	8 mA	AE3
			0.11/1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Signal Name				
Limited ISA			Pin	
Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	No.
DACK0#		0	8 mA	AD8
DACK1#		0	8 mA	AC8
DACK2#		0	8 mA	AF8
DACK3#		0	8 mA	AF7
DACK5#		0	8 mA	AE7
DACK6#		0	8 mA	AD7
DACK7#		0	8 mA	AC7
DCLK		0	DOTCLK	A10
DDC_SCL		0	8 mA	M2
DDC_SDA		I/O	8 mA	M4
DEVSEL#		I/O	PCI	A23
DPORT1		I/O	USB	Y1
D+_PORT1		I/O	USB	Y2
DPORT2		I/O	USB	AA1
D+_PORT2		I/O	USB	AA2
DRQ0		I	8 mA	AE18
DRQ1		I	8 mA	AD12
DRQ2		I	8 mA	AE10
DRQ3		I	8 mA	AD13
DRQ5		I	8 mA	AD18
DRQ6		I	8 mA	AE20
DRQ7		I	8 mA	AF22
ENA_DISP		I	8 mA	B1
EXTVREFIN		I, Analog		T2
FP_CLK	No Function	0	FP_CLK	M1
FP_CLK_EVEN	No Function	0	8 mA	L3
FP_DATA0	SA0	I/O	8 mA	K3
FP_DATA1	SA1	I/O	8 mA	J2
FP_DATA2	SA2	I/O	8 mA	J3
FP_DATA3	SA3	I/O	8 mA	J1
FP_DATA4	SA4	I/O	8 mA	H1
FP_DATA5	SA5	I/O	8 mA	G2
FP_DATA6	SA6	I/O	8 mA	G4
FP_DATA7	SA7	I/O	8 mA	G3
FP_DATA8	SA8	I/O	8 mA	G1
FP_DATA9	SA9	I/O	8 mA	F1
FP_DATA10	SA10	I/O	8 mA	E2
FP_DATA11	SA11	I/O	8 mA	D1
FP_DATA12	SA12	I/O	8 mA	L1
FP_DATA13	SA13	I/O	8 mA	K2
FP_DATA14	SA14	I/O	8 mA	K1
FP_DATA15	SA15	I/O	8 mA	H2
FP_DATA16	SA_OE#	0	8 mA	H3
FP_DATA17	MASTER#	I/O	8 mA	F3
FP_DISP_ENA_OUT	No Function	0	8 mA	F2
FP_ENA_BKL	No Function	0	8 mA	J4
FP_ENA_VDD	No Function	0	8 mA	L2
FP_HSYNC	No Function	I	8 mA	C2
FP_HSYNC_OUT	SMEMW#	0	8 mA	E1
FP VSYNC	No Function	I	8 mA	C1
FP_VSYNC_OUT	SMEMR#	0	8 mA	E3

Table 2-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
GNT#	•	I	PCI	D24
GPCS#	GPCS#			AF26
GPIO0		I/O	8 mA	AC22
GPIO1/SDATA_IN2		I/O	8 mA	AE24
GPIO2		I/O	8 mA	AF25
GPIO3		I/O	8 mA	AF24
GPIO4/SA20	SA20	I/O	8 mA	AD22
GPIO5/SA21	SA21	I/O	8 mA	AC21
GPIO6/SA22	SA22	I/O	8 mA	AE23
GPIO7/SA23	SA23	I/O	8 mA	AF23
GPORT_CS#	•	0	8 mA	AD21
HOLD_REQ# (strap pir	ו)	I/O	PCI	H26
HSYNC	,	I	8 mA	C6
HSYNC_OUT		0	8 mA	N1
IDE_ADDR0		0	IDE	U25
IDE_ADDR1		0	IDE	U26
IDE_ADDR2		0	IDE	W24
IDE CS0#		0	IDE	V26
IDE_CS1#		0	IDE	Y26
IDE DACK0#		0	IDE	T26
IDE DACK1#		0	IDE	T24
IDE_DATA0		I/O	IDE	AC26
IDE_DATA0		1/O	IDE	AA24
IDE_DATA1		1/O	IDE	AB24
IDE_DATA3		1/O	IDE	AB24 AB26
IDE_DATA3			IDE	AB20 AA26
IDE_DATA5		1/0	IDE	W26
_		1/0		U24
IDE_DATA6		1/0	IDE IDE	
IDE_DATA7		1/0		U23
IDE_DATA8		1/0	IDE	V24
IDE_DATA9		1/0	IDE	Y25
IDE_DATA10		1/0	IDE	V25
IDE_DATA11		1/0	IDE	Y24
IDE_DATA12		1/0	IDE	AA25
IDE_DATA13		I/O	IDE	AB25
IDE_DATA14		I/O	IDE	AC25
IDE_DATA15		I/O	IDE	AB23
IDE_DREQ0		I	IDE	AD26
IDE_DREQ1		I	IDE	AC24
IDE_IOR0#		0	IDE	R26
IDE_IOR1#		0	IDE	R25
IDE_IORDY0		1	IDE	AD25
IDE_IORDY1		I	IDE	AE26
IDE_IOW0#		0	IDE	R24
IDE_IOW1#		0	IDE	T25
IDE_RST#		0	IDE	W25
INTA#		I	PCI	A14
INTB#	I	PCI	D15	
INTC#		I	PCI	C15
INTD#		I	PCI	B14
INTR (strap pin)		I/O	8 mA	P26

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
IOCHRDY	•	I/O, OD	8 mA	AF11
IOCS16#		I	8 mA	AF16
IOR#		I/O (PU)	8 mA	AE12
IOUTB		O, Analog		R1
IOUTR		O, Analog		P3
IOUTG		O, Analog		P4
IOW#		I/O (PU)	8 mA	AC11
IRDY#		I/O	PCI	B24
IREF		I, Analog		R3
IRQ1		1	8 mA	AF13
IRQ3		I	8 mA	AC14
IRQ4		I	8 mA	AE15
IRQ5		I	8 mA	AE13
IRQ6		1	8 mA	AF14
IRQ7			8 mA	AD14
IRQ8#			8 mA	AE14
IRQ9			8 mA	AE5
IRQ10			8 mA	AE16
IRQ11			8 mA	AF18
IRQ12			8 mA	AF17
IRQ13			8 mA	R23
IRQ14		1	8 mA	AC17
IRQ14			8 mA	AD17
ISACLK		0	8 mA	AD17 AD6
KBROMCS#		0	8 mA	AE4
LOCK#		1/O	PCI	C22
MEMCS16#		1/O, OD	8 mA	AC15
MEMR#		I/O (PU)	8 mA	AC15 AE19
MEMW#		I/O (PU)		AF20
NC		1/O (FU)	8 mA	
NC				AA3
NC				AB1
-				AB2
NC				AB3
NC				AC1
NC				AC2
NC				AC3
NC				AD1
NC				AD2
NC				AD3
NC				AE1
NC				AE2
NC				AF1
NC				AF2
NC				D2
NC				M26
NC				N24
NC				T1
NC				W2
NC				Y3
OVER_CUR#		I	8 mA	W3
PAR		I/O	PCI	A21

Geode[™] CS5530A

Signal Definitions (Continued)

Table 2-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name				
Limited ISA ISA Master Mode Mode		Pin Type ¹	Buffer Type ²	Pin No.
PC_BEEP		0	8 mA	V3
PCICLK		I (SMT)	CLK	J26
PCI RST#		0	8 mA	C14
PCLK		1	8 mA	A13
PERR#		1/0	PCI	B22
PIXEL0		1/0	8 mA	A1
PIXEL1			8 mA	A1 A2
PIXEL2			8 mA	A2
PIXEL3			8 mA	C4
PIXEL4		1	8 mA	B3
PIXEL5			8 mA	B3
PIXEL6			8 mA	D5
			8 mA	-
PIXEL7			8 mA	A4
PIXEL8 PIXEL9			-	B6
~			8 mA	D6
PIXEL10			8 mA	A5
PIXEL11		1	8 mA	C5
PIXEL12		1	8 mA	A7
PIXEL13		1	8 mA	D7
PIXEL14		1	8 mA	C7
PIXEL15		1	8 mA	B8
PIXEL16		1	8 mA	A8
PIXEL17		1	8 mA	C8
PIXEL18		1	8 mA	B9
PIXEL19		1	8 mA	A9
PIXEL20		1	8 mA	D9
PIXEL21		1	8 mA	C9
PIXEL22		1	8 mA	B11
PIXEL23		1	8 mA	C10
PLLAGD		I, Analog		N25
PLLDGN		I, Analog		N26
PLLDVD		I, Analog		M23
PLLTEST				N23
PLLVAA		I, Analog		M25
POR#		I	8 mA	K24
POWER_EN		0	8 mA	V4
PSERIAL		I	8 mA	L26
REQ#	1	0	PCI	J25
SA0/SD0	SD0	I/O (PU)	8 mA	AE9
SA1/SD1	SD1	I/O (PU)	8 mA	AE6
SA2/SD2	SD2	I/O (PU)	8 mA	AD9
SA3/SD3	SD3	I/O (PU)	8 mA	AC6
SA4/SD4	SD4	I/O (PU)	8 mA	AF6
SA5/SD5	SD5	I/O (PU)	8 mA	AD5
SA6/SD6	SD6	I/O (PU)	8 mA	AF5
SA7/SD7	SD7	I/O (PU)	8 mA	AF4
SA8/SD8	SD8	I/O (PU)	8 mA	AF19
SA9/SD9	SD9	I/O (PU)	8 mA	AD19
SA10/SD10	SD10	I/O (PU)	8 mA	AC20
SA11/SD11	SD11	I/O (PU)	8 mA	AF21
SA12/SD12	SD12	I/O (PU)	8 mA	AE2

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
SA13/SD13	SD13	I/O (PU)	8 mA	AE22
SA14/SD14	SD14	I/O (PU)	8 mA	AD24
SA15/SD15	SD15	I/O (PU)	8 mA	AE25
SA16	•	I/O (PU)	8 mA	AD11
SA17		I/O (PU)	8 mA	AF12
SA18		I/O (PU)	8 mA	AE11
SA19		I/O (PU)	8 mA	AD10
SA_LATCH	SA_DIR	0	8 mA	AD15
SBHE#		I/O (PU)	8 mA	AE17
SDATA_IN		I	8 mA	U4
SDATA_OUT		0	8 mA	V1
SERR#		I/O, OD	PCI	A22
SMEMR#/RTCALE		0	8 mA	AD4
SMEMW#/RTCCS#		0	8 mA	AF3
SMI#		I/O	8 mA	P25
STOP#		I/O	PCI	E26
SUSP#		0	8 mA	K26
SUSPA#		I	8 mA	L25
SUSP_3V		I/O	8 mA	L24
SYNC		0	8 mA	U3
TC		0	8 mA	AF15
TEST		1	8 mA	D3
TRDY#		I/O	PCI	B23
TVCLK		1	8 mA	B2
USBCLK		I (SMT)	CLK	W1
V _{DD}		PWR		D10
V _{DD}		PWR		D17
V _{DD}		PWR		AC10
V _{DD}		PWR		AC19
V _{DD}		PWR		AD16
V _{DD}		PWR		AD23
V _{DD}		PWR		C19
V _{DD}		PWR		C24
		PWR		C3
V _{DD}		PWR		D21
V _{DD} V _{DD}		PWR		F24
		PWR		F4
V _{DD} V _{DD}		PWR		H24
V _{DD}		PWR		L23
		PWR		L23
V _{DD}		PWR		T23
V _{DD}		PWR		Y23
V _{DD} V _{DD} _USB		PWR		U2
VID_CLK			 8 mA	A6
VID_DATA0		1	8 mA	A0 A11
VID_DATA1		1		
		1	8 mA	C13 B13
VID_DATA2			8 mA	B13
VID_DATA3		1	8 mA	C11
VID_DATA4		1	8 mA	D11
VID_DATA5		1	8 mA	A12
VID_DATA6		I	8 mA	B12

Table 2-3. 352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name (Continued)

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
VID_DATA7		I	8 mA	C12
VID_RDY		0	8 mA	B10
VID_VAL		I	8 mA	B7
V _{SS}		GND		D12
V _{SS}		GND		D13
V _{SS}		GND		D16
V _{SS}		GND		AA23
V _{SS}		GND		AC12
V _{SS}		GND		AC13
V _{SS}		GND		AC16
V _{SS}		GND		AC18
V _{SS}		GND		AC23
V _{SS}		GND		AC4
V _{SS}		GND		AC5
V _{SS}		GND		AC9
V _{SS}		GND		AD20
V _{SS}		GND		C18
V _{SS}		GND		C21
V _{SS}		GND		D19
V _{SS}		GND		D20
V _{SS}		GND		D22
V _{SS}		GND		D23
V _{SS}		GND		D4
V _{SS}		GND		D8
V _{SS}		GND		E23
V _{SS}		GND		E4

Signal Name				
Limited ISA Mode	ISA Master Mode	Pin Type ¹	Buffer Type ²	Pin No.
V _{SS}	•	GND		F23
V _{SS}		GND		G23
V _{SS}		GND		H23
V _{SS}		GND		H4
V _{SS}		GND		J23
V _{SS}		GND		K23
V _{SS}		GND		K4
V _{SS}		GND		M24
V _{SS}		GND		M3
V _{SS}		GND		N3
V _{SS}		GND		P23
V _{SS}		GND		V23
V _{SS}		GND		W23
V _{SS}		GND		W4
V _{SS}		GND		Y4
VSYNC		I	8 mA	B5
VSYNC_OUT		0	8 mA	N2
ZEROWS#		I	8 mA	AF10

1. See Table 2-1 "Pin Type Definitions" on page 14 for pin type definitions.

See Table 5-4 "DC Characteristics" on page 238 and Table 5-8 "AC Characteristics" on page 242 for more information on buffer types. Note that some bidirectional buffers are used as input only, indicated by an "I" in the Pin Type column.

2.2 SIGNAL DESCRIPTIONS

2.2.1 Reset Interface

Signal Name	Pin No.	Pin Type	Description
PCI_RST#	C14	0	PCI Reset
			PCI_RST# resets the PCI bus and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#.
POR#	K24	I	Power On Reset
			POR# is the system reset signal generated from the power supply to indi- cate that the system should be reset.
CPU_RST	K25	0	CPU Reset
			CPU_RST resets the CPU and is asserted while POR# is asserted, and for approximately 9 ms following the deassertion of POR#. CLK_14MHZ is used to generate this signal.

2.2.2 Clock Interface

Signal Name	Pin No.	Pin Type	Description
PCICLK	J26	I	PCI Clock
		(SMT)	The PCI clock is used to drive most circuitry of the CS5530A.
TVCLK	B2	I	Television Clock
			The TVCLK is an input from a digital NTSC/PAL converter which is option- ally re-driven back out onto the DCLK signal under software program con- trol. This is only used if interfacing to a compatible digital NTSC/PAL encoder device.
DCLK	A10	0	DOT Clock
			DOT clock is generated by the CS5530A and typically connects to the pro- cessor to create the clock used by the graphics subsystem. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz. However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency.
ISACLK	AD6	0	ISA Bus Clock
			ISACLK is derived from PCICLK and is typically programmed for approxi- mately 8 MHz. F0 Index 50h[2:0] are used to program the ISA clock divisor.
CLK_14MHZ	P24	I (SMT)	14.31818 MHz Clock
			This clock is used to generate CPU_RST to the Geode processor. DOT clock (DCLK) is also derived from this clock.
USBCLK	W1	I	USBCLK
		(SMT)	This input is used as the clock source for the USB. In this mode, a 48 MHz clock source input is required.
CLK_32K	AE3	I/O	32 KHz Clock
			CLK_32K is a 32.768 KHz clock used to generate reset signals, as well as to maintain power management functionality. It should be active when power is applied to the CS5530A.
			CLK_32K can be an input or an output. As an output CLK_32K is internally derived from CLK_14MHZ. F0 Index 44h[5:4] are used to program this pin.

2.2.3 CPU Interface

Signal Name	Pin No.	Pin Type	Description
INTR	P26	0	CPU Interrupt Request
	Strap Option Pin		INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQ_n) is sampled active.
		I	Strap Option Select Pin
			Pin P26 is a strap option select pin. It is used to select whether the CS5530A operates in Limited ISA or ISA Master mode.
			ISA Limited Mode—Strap pin P26 low through a 10-kohm resistor. ISA Master Mode—Strap pin P26 high through a 10-kohm resistor.
SMI#	P25	I/O	System Management Interrupt
			SMI# is a level-sensitive interrupt to the CPU that can be configured to assert on a number of different system events. After an SMI# assertion, System Management Mode (SMM) is entered, and program execution begins at the base of SMM address space.
			Once asserted, SMI# remains active until all SMI sources are cleared.
IRQ13	R23	I	IRQ13
			IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
PSERIAL	L26	I	Power Management Serial Interface
			PSERIAL is the unidirectional serial data link between the GX-series pro- cessor and the CS5530A. An 8-bit serial data packet carries status on powe management events within the CPU. Data is clocked synchronous to the PCICLK input clock.
SUSP#	K26	0	CPU Suspend
			SUSP# asserted requests that the CPU enters Suspend mode and the CPL asserts SUSPA# after completion. The SUSP# pin is deasserted if SUSP# has gone active and any Speedup or Resume event has occurred, including expiration of the Suspend Modulation ON timer, which is loaded from F0 Index 95h. If the SUSP#/SUSPA# handshake is configured as a system 3 Volt Suspend, the deassertion of SUSP# is delayed by an interval programmed in F0 Index BCh[7:4] to allow the system clock chip and the processor to stabilize.
			The SUSP#/SUSPA# handshake occurs as a result of a write to the Suspend Notebook Command Register (F0 Index AFh), or expiration of the Suspend Modulation OFF timer (loaded from F0 Index 94h) when Suspend Modulation is enabled. Suspend Modulation is enabled via F0 Index 96h[0] If SUSPA# is asserted as a result of a HALT instruction, SUSP# does not deassert when the Suspend Modulation ON timer (loaded from F0 Index 95h) expires.
SUSPA#	L25	I	CPU Suspend Acknowledge
			SUSPA# is a level input from the processor. When asserted it indicates the CPU is in Suspend mode as a result of SUSP# assertion or execution of a HALT instruction.

2.2.3 CPU Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
SUSP_3V	L24	I/O	Suspend 3 Volt Active
			SUSP_3V can be connected to the output enable (OE) of a clock synthesis or buffer chip to stop the clocks to the system. SUSP_3V is asserted after the SUSP#/SUSPA# handshake that follows a write to the Suspend Note- book Command Register (F0 Index AFh) with bit 0 set in the Clock Stop Control Register (F0 Index BCh).
			As an input, SUSP_3V is sampled during power-on-reset to determine the inactive state. This allows the system designer to match the active state of SUSP_3V to the inactive state for a clock driver output enabled with a pull-up/down 10-kohm resistor. If pulled down, SUSP_3V is active high. If pulled up, SUSP_3V is active low.

2.2.4 PCI Interface

Signal Name	Pin No.	Pin Type	Description
AD[31:0]	Refer	I/O	PCI Address/Data
	to Table 2-3		AD[31:0] is a physical address during the first clock of a PCI transaction; it is the data during subsequent clocks.
			When the CS5530A is a PCI master, AD[31:0] are outputs during the address and write data phases, and are inputs during the read data phase of a transaction.
			When the CS5530A is a PCI slave, AD[31:0] are inputs during the address and write data phases, and are outputs during the read data phase of a transaction.
C/BE[3:0]#	D26,	I/O	PCI Bus Command and Byte Enables
	A24, B21, B18	21,	During the address phase of a PCI transaction, C/BE[3:0]# define the bus command. During the data phase of a transaction, C/BE[3:0]# are the data byte enables.
			C/BE[3:0]# are outputs when the CS5530A is a PCI master and inputs when it is a PCI slave.
INTA#,	A14,	I	PCI Interrupt Pins
INTB#, INTC#, INTD#	D15, C15, B14	C15,	The CS5530A provides inputs for the optional "level-sensitive" PCI interrupts (also known in industry terms as PIRQx#). These interrupts may be mapped to IRQs of the internal 8259s using PCI Interrupt Steering Registers 1 and 2 (F0 Index 5Ch and 5Dh).
			The USB controller uses INTA# as its output signal. Refer to PCIUSB Index 3Dh.
REQ#	J25	0	PCI Bus Request
			The CS5530A asserts REQ# in response to a DMA request or ISA master request to gain ownership of the PCI bus. The REQ# and GNT# signals are used to arbitrate for the PCI bus.
			REQ# should connect to the REQ0# of the GX-series processor and func- tion as the highest-priority PCI master.

2.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GNT#	D24	I	PCI Bus Grant
			GNT# is asserted by an arbiter that indicates to the CS5530A that access t the PCI bus has been granted.
			GNT# should connect to GNT0# of the GX-series processor and function a the highest-priority PCI master.
HOLD_REQ#	H26	0	PCI Bus Hold Request
	Strap Option		This pin's function as HOLD_REQ# is no longer applicable.
	Pin	I	Strap Option Select Pin
			Pin H26 is a strap option select pin. It allows selection of which address bi are used as the IDSEL.
			Strap pin H26 low: IDSEL = AD28 (Chipset Register Space) and AD29 (US Register Space)
			Strap pin H26 high: IDSEL = AD26 (Chipset Register Space) and AD27 (USB Register Space)
FRAME#	C23	I/O	PCI Cycle Frame
			FRAME# is asserted to indicate the start and duration of a transaction. It deasserted on the final data phase.
			FRAME# is an input when the CS5530A is a PCI slave.
IRDY#	B24	I/O	PCI Initiator Ready
			IRDY# is driven by the master to indicate valid data on a write transaction, that it is ready to receive data on a read transaction.
			When the CS5530A is a PCI slave, IRDY# is an input that can delay the beginning of a write transaction or the completion of a read transaction.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted togeth
TRDY#	B23	I/O	PCI Target Ready
			TRDY# is asserted by a PCI slave to indicate it is ready to complete the corrent data transfer.
			TRDY# is an input that indicates a PCI slave has driven valid data on a rea or a PCI slave is ready to accept data from the CS5530A on a write.
			TRDY# is an output that indicates the CS5530A has placed valid data on AD[31:0] during a read or is ready to accept the data from a PCI master on write.
			Wait cycles are inserted until both IRDY# and TRDY# are asserted togeth
STOP#	E26	I/O	PCI Stop
			As an input, STOP# indicates that a PCI slave wants to terminate the curre transfer. The transfer is either aborted or retried. STOP# is also used to er a burst.
			As an output, STOP# is asserted with TRDY# to indicate a target discon- nect, or without TRDY# to indicate a target retry. The CS5530A asserts STOP# during any cache line crossings if in single transfer DMA mode or busy.

2.2.4 PCI Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
LOCK#	C22	I/O	PCI Lock
			LOCK# indicates an atomic operation that may require multiple transactions to complete.
			If the CS5530A is currently the target of a LOCKed transaction, any other PCI master request with the CS5530A as the target is forced to retry the transfer.
			The CS5530A does not generate LOCKed transactions.
DEVSEL#	A23	I/O	PCI Device Select
			DEVSEL# is asserted by a PCI slave, to indicate to a PCI master and sub- tractive decoder that it is the target of the current transaction.
			As an input, DEVSEL# indicates a PCI slave has responded to the current address.
			As an output, DEVSEL# is asserted one cycle after the assertion of FRAME# and remains asserted to the end of a transaction as the result of a positive decode. DEVSEL# is asserted four cycles after the assertion of FRAME# if DEVSEL# has not been asserted by another PCI device when the CS5530A is programmed to be the subtractive decode agent. The subtractive decode sample point is configured in F0 Index 41h[2:1]. Subtractive decode cycles are passed to the ISA bus.
PAR	A21	I/O	PCI Parity
			PAR is the parity signal driven to maintain even parity across AD[31:0] and C/BE[3:0]#.
			The CS5530A drives PAR one clock after the address phase and one clock after each completed data phase of write transactions as a PCI master. It also drives PAR one clock after each completed data phase of read transactions as a PCI slave.
PERR#	B22	I/O	PCI Parity Error
			PERR# is pulsed by a PCI device to indicate that a parity error was detected. If a parity error was detected, PERR# is asserted by a PCI slave during a write data phase and by a PCI master during a read data phase.
			When the CS5530A is a PCI master, PERR# is an output during read trans- fers and an input during write transfers. When the CS5530A is a PCI slave, PERR# is an input during read transfers and an output during write trans- fers.
			Parity detection is enabled through F0 Index 04h[6]. An NMI is generated if I/O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.
SERR#	A22	I/O	PCI System Error
		OD	SERR# is pulsed by a PCI device to indicate an address parity error, data parity error on a special cycle command, or other fatal system errors.
			SERR# is an open-drain output reporting an error condition, and an input indicating that the CS5530A should generate an NMI. As an input, SERR# is asserted for a single clock by the slave reporting the error.
			System error detection is enabled with F0 Index 04h[8]. An NMI is generated if I/O Port 061h[2] is set. PERR# can assert SERR# if F0 Index 41h[5] is set.

2.2.5 ISA Bus Interface

Signal Name	Pin No.	Pin Type	Description
SA_LATCH/ SA_DIR	AD15	0	Limited ISA Mode: System Address Latch
			This signal is used to latch the destination address, which is multiplexed on bits [15:0] of the SA/SD bus.
			ISA Master Mode: System Address Direction
			Controls the direction of the external 5.0V tolerant transceiver on bits [15:0] of the SA bus. When low, the SA bus is driven out. When high, the SA bus is driven into the CS5530A by the external transceiver.
SA_OE#/	H3	0	Limited ISA Mode: Flat Panel Data Port Line 16
FP_DATA16			Refer to Section 2.2.11 "Display Interface" on page 35 for this signal's defini- tion.
		0	ISA Master Mode: System Address Transceiver Output Enable
			Enables the external transceiver on bits [15:0] of the SA bus.
MASTER#/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17
FP_DATA17			Refer to Section 2.2.11 "Display Interface" on page 35 for this signal's definition.
		I	ISA Master Mode: Master
			The MASTER# input asserted indicates an ISA bus master is driving the ISA bus.
SA23/GPIO7	AF23	I/O	Limited ISA Mode: System Address Bus Lines 23 through 20 or
SA22/GPIO6	AE23		General Purpose I/Os 7 through 4
SA21/GPIO5 SA20/GPIO4	AC21 AD22		These pins can function either as the upper four bits of the SA bus or as general purpose I/Os. Programming is done through F0 Index 43h, bits 6 and 2.
			Refer to Section 2.2.9 "Game Port and General Purpose I/O Interface" on page 33 for further details when used as GPIOs.
			ISA Master Mode: System Address Bus Lines 23 through 20
			The pins function only as the four MSB (most significant bits) of the SA bus.
SA[19:16]	AD10,	AD10, I/O	System Address Bus Lines 19 through 16
	AE11, AF12, AD11	(PU)	Refer to SA[15:0] signal description.
SA[15:0]/SD[15:0]	Refer	I/O	Limited ISA Mode: System Address Bus / System Data Bus
	to Table 2-3	(PU)	This bus carries both the addresses and data for all ISA cycles. Initially, the address is placed on the bus and then SA_LATCH is asserted in order for external latches to latch the address. At some time later, the data is put on the bus, for a read, or the bus direction is changed to an input, for a write.
			Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull- up resistor.
			ISA Master Mode: System Data Bus
			These pins perform only as SD[15:0] and pins FP_DATA[15:0] take on the functions of SA[15:0].
			Pins designated as SA/SD[15:0] are internally connected to a 20-kohm pull- up resistor.

2.2.5 ISA Bus Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
SMEMW#/	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
FP_HSYNC_OUT			Refer to Section 2.2.11 "Display Interface" on page 35 for this signal's defini- tion.
			Note that if Limited ISA Mode of operation is selected, SMEMW# is available on pin AF3 (multiplexed with RTCCS#).
			ISA Master Mode: System Memory Write
			SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
SMEMR#/	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output
FP_VSYNC_OUT			Refer to Section 2.2.11 "Display Interface" on page 35 for this signal's defini- tion.
			Note that if Limited ISA Mode of operation is selected, SMEMR# is available on pin AD4 (multiplexed with RTCALE).
			ISA Master Mode: System Memory Read
			SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
SMEMW#/	AF3	0	System Memory Write / Real-Time Clock Chip Select
RTCCS#			If Limited ISA Mode of operation has been selected, then SMEMW# can be output on this pin. SMEMW# is asserted for any memory write accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
			RTCCS# is a chip select to an external real-time clock chip. This signal is activated on reads or writes to I/O Port 071h.
			Function selection is made through F0 Index 53h[2]: 0 = SMEMW#, 1 = RTCCS#.
SMEMR#/	AD4	0	System Memory Read / Real-Time Clock Address Latch Enable
RTCALE			If Limited ISA Mode of operation has been selected, then SMEMR# can be output on this pin. SMEMR# is asserted for memory read accesses below 1 MB (i.e., A23:A20 set to 0). This enables 8-bit memory slaves to decode the memory address on SA[19:0].
			RTCALE is a signal telling an external real-time clock chip to latch the address, which is on the SD bus.
			Function selection is made through F0 Index 53h[2]: 0 = SMEMR#, 1 = RTCALE.
SBHE#	AE17	I/O	System Bus High Enable
		(PU)	The CS5530A or ISA master asserts SBHE# to indicate that SD[15:8] will be used to transfer a byte at an odd address.
			SBHE# is an output during non-ISA master DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles. It is forced low for all 16-bit DMA cycles.
			SBHE# is an input during ISA master operations.
			This pin is internally connected to a 20-kohm pull-up resistor.
BALE	AF9	0	Buffered Address Latch Enable
			BALE indicates when SA[23:0] and SBHE# are valid and may be latched. For DMA transfers, BALE remains asserted until the transfer is complete.

ч) 225 rf. in **.**+i 10

Signal Name	Pin No.	Pin Type	Description
IOCHRDY	AF11	I/O	I/O Channel Ready
		OD	IOCHRDY deasserted indicates that an ISA slave requires additional wait states.
			When the CS5530A is an ISA slave, IOCHRDY is an output indicating addi- tional wait states are required.
ZEROWS#	AF10	I	Zero Wait States
			ZEROWS# asserted indicates that an ISA 8- or 16-bit memory slave can shorten the current cycle. The CS5530A samples this signal in the phase after BALE is asserted. If asserted, it shortens 8-bit cycles to three ISACLKs and 16-bit cycles to two ISACLKs.
IOCS16#	AF16	I	I/O Chip Select 16
			IOCS16# is asserted by 16-bit ISA I/O devices based on an asynchronous decode of SA[15:0] to indicate that SD[15:0] will be used to transfer data.
			8-bit ISA I/O devices only use SD[7:0].
IOR#	AE12	I/O	I/O Read
		(PU)	IOR# is asserted to request an ISA I/O slave to drive data onto the data bus.
			This pin is internally connected to a 20-kohm pull-up resistor.
IOW#	AC11	I/O	I/O Write
		(PU)	IOW# is asserted to request an ISA I/O slave to accept data from the data bus.
			This pin is internally connected to a 20-kohm pull-up resistor.
MEMCS16#	AC15	I/O OD	Memory Chip Select 16
			MEMCS16# is asserted by 16-bit ISA memory devices based on an asyn- chronous decode of SA[23:17] to indicate that SD[15:0] will be used to trans fer data.
			8-bit ISA memory devices only use SD[7:0].
MEMR#	AE19	I/O	Memory Read
		(PU)	MEMR# is asserted for any memory read accesses. It enables 16-bit mem- ory slaves to decode the memory address on SA[23:0].
			This pin is internally connected to a 20-kohm pull-up resistor.
MEMW#	AF20	I/O	Memory Write
		(PU)	MEMW# is asserted for any memory write accesses. It enables 16-bit memory slaves to decode the memory address on SA[23:0].
			This pin is internally connected to a 20-kohm pull-up resistor.
AEN	AE8	0	Address Enable
			AEN asserted indicates that a DMA transfer is in progress, informing I/O devices to ignore the I/O cycle.
IRQ[15:14], [12:9],	Refer	I	ISA Bus Interrupt Request
[7:3], 1	to Table 2-3		IRQ inputs indicate ISA devices or other devices requesting a CPU interrupt service.
IRQ8#	AE14	I	Real-Time Clock Interrupt
			IRQ8# is the (active-low) interrupt that comes from the external RTC chip and indicates a date/time update has completed.

2.2.5 ISA Bus Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
DRQ[7:5], DRQ[3:0]	Refer to Table 2-3	I	DMA Request - Channels 7 through 5 and 3 through 0 DRQ inputs are asserted by ISA DMA devices to request a DMA transfer. The request must remain asserted until the corresponding DACK is asserted.
DACK[7:5]#, DACK[3:0]#	Refer to Table 2-3	0	DMA Acknowledge - Channels 7 through 5 and 3 through 0 DACK outputs are asserted to indicate when a DRQ is granted and the start of a DMA cycle.
TC	AF15	0	Terminal Count TC signals the final data transfer of a DMA transfer.

2.2.6 ROM Interface

Signal Name	Pin No.	Pin Type	Description
KBROMCS#	AE4	0	Keyboard/ROM Chip Select
			KBROMCS# is the enable pin for the BIOS ROM and for the keyboard con- troller. For ROM accesses, KBROMCS# is asserted for ISA memory accesses programmed at F0 Index 52h[2:0].
			For keyboard controller accesses, KBROMCS# is asserted for I/O accesses to I/O Ports 060h, 062h, 064h, and 066h.

2.2.7 IDE Interface

Signal Name	Pin No.	Pin Type	Description
IDE_RST#	W25	0	IDE Reset
			This signal resets all the devices that are attached to the IDE interface.
IDE_ADDR[2:0]	W24,	0	IDE Address Bits
	U26, U25		These address bits are used to access a register or data port in a device on the IDE bus.
IDE_DATA[15:0]	Refer	I/O	IDE Data Lines
	to Table 2-3		IDE_DATA[15:0] transfers data to/from the IDE devices.
IDE_IOR0#	R26	0	IDE I/O Read for Channels 0 and 1
IDE_IOR1#	R25	0	IDE_IOR0# is the read signal for Channel 0, and IDE_IOR1# is the read signal for Channel 1. Each signal is asserted on read accesses to the corresponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — DMARDY0# and DMARDY1# Write Cycle — STROBE0 and STROBE1
IDE_IOW0#	R24	0	IDE I/O Write for Channels 0 and 1
IDE_IOW1#	T25	0	IDE_IOW0# is the write signal for Channel 0, and IDE_IOW1# is the read signal for Channel 1. Each signal is asserted on write accesses to corresponding IDE port addresses.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STOP0 and STOP1 Write Cycle — STOP0 and STOP1
IDE_CS0#	V26	0	IDE Chip Selects
IDE_CS1#	Y26	0	The chip select signals are used to select the command block registers in an IDE device.
IDE_IORDY0	AD25	I	I/O Ready Channels 0 and 1
IDE_IORDY1	AE26	I	When deasserted, these signals extend the transfer cycle of any host regis- ter access when the device is not ready to respond to the data transfer request.
			When in Ultra DMA/33 mode, these signals are redefined: Read Cycle — STROBE0 and STROBE1 Write Cycle — DMARDY0# and DMARDY1#
IDE_DREQ0	AD26	I	DMA Request Channels 0 and 1
IDE_DREQ1	AC24	I	The DREQ is used to request a DMA transfer from the CS5530A. The direction of the transfers are determined by the IDE_IOR/IOW signals.
IDE_DACK0#	T26	0	DMA Acknowledge Channels 0 and 1
IDE_DACK1#	T24	0	The DACK# acknowledges the DREQ request to initiate DMA transfers.

2.2.8 USB Interface

Signal Name	Pin No.	Pin Type	Description
POWER_EN	V4	0	Power Enable
			This pin enables the power to a self-powered USB hub.
OVER_CUR#	W3	I	Over Current
			This pin indicates the USB hub has detected an overcurrent on the USB.
D+_PORT1	Y2	I/O	USB Port 1 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 1.
DPORT1	Y1	I/O	USB Port 1 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 1.
D+_PORT2	AA2	I/O	USB Port 2 Data Positive
			This pin is the Universal Serial Bus Data Positive for port 2.
DPORT2	AA1	I/O	USB Port 2 Data Minus
			This pin is the Universal Serial Bus Data Minus for port 2.
V _{DD} _USB	U2	PWR	Power for USB
AV _{DD} USB	AB4	I	Analog Power for USB
		Analog	
AV _{SS} _USB	AA4	I.	Analog Ground for USB
		Analog	

2.2.9 Game Port and General Purpose I/O Interface

Signal Name	Pin No.	Pin Type	Description
GPORT_CS#	AD21	0	Game Port Chip Select
			GPORT_CS# is asserted upon any I/O reads or I/O writes to I/O Port 200h and 201h.
GPCS#	AF26	0	General Purpose Chip Select
			GPCS# is asserted upon any I/O access that matches the I/O address in the General Purpose Chip Select Base Address Register (F0 Index 70h) and the conditions set in the General Purpose Chip Select Control Register (F0 Index 72h).
GPIO7/SA23	AF23	I/O	Limited ISA Mode: General Purpose I/Os 7 through 4 or
GPIO6/SA22	AE23		System Address Bus Lines 23 through 20
GPIO5/SA21	AC21		These pins can function either as general purpose I/Os or as the upper four bits of the SA bus. Selection is done through F0 Index 43h[6,2].
GPIO4/SA20	AD22		Refer to GPIO[3:2] signal description for GPIO function description.
			ISA Master Mode: System Address Bus Lines 23 through 20
			These pins function as the four MSB (most significant bits) of the SA bus.
GPIO3	AF24	I/O	General Purpose I/Os 3 and 2
GPIO2	AF25	I/O	GPIOs can be programmed to operate as inputs or outputs via F0 Index 90h. As an input, the GPIO can be configured to generate an external SMI. Additional configuration can select if the SMI# is generated on the rising or falling edge. GPIO external SMI generation/edge selection is done in F0 Index 92h and 97h.

GeodeTM CS5530A

Signal Definitions (Continued)

2.2.9 Game Port and General Purpose I/O Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
GPIO1/ SDATA_IN2	AE24	I/O	General Purpose I/O 1 or Serial Data Input 2
			This pin can function either as a general purpose I/O or as a second serial data input pin if two codecs are used in the system.
			In order for this pin to function as SDATA_IN2, it must first be configured as an input (F0 Index 90h[1] = 0). Then setting F3BAR+Memory Offset 08h[21] = 1 selects the pin to function as SDATA_IN2.
			Refer to GPIO[3:2] signal description for GPIO function description.
GPIO0	AC22	I/O	General Purpose I/O 0
			Refer to GPIO[3:2] signal description for GPIO function description.

2.2.10 Audio Interface

Signal Name	Pin No.	Pin Type	Description
BIT_CLK	V2	I	Audio Bit Clock
			The serial bit clock from the codec.
SDATA_OUT	V1	0	Serial Data I/O
			This output transmits audio serial data to the codec.
SDATA_IN	U4	I	Serial Data Input
			This input receives serial data from the codec.
SYNC	U3	0	Serial Bus Synchronization
			This bit is asserted to synchronize the transfer of data between the CS5530A and the AC97 codec.
PC_BEEP	V3	0	РС Веер
			Legacy PC/AT speaker output.

2.2.11 Display Interface

Signal Name	Pin No.	Pin Type	Description
Pixel Port			·
PCLK	A13	I	Pixel Clock
			This clock is used to sample data on the PIXEL input port. It runs at the graphics DOT clock (DCLK) rate.
PIXEL[23:0]	Refer	I	Pixel Data Port
	to Table 2-3		This is the input pixel data from the processor's display controller. If F4BAR+Memory Offset 00h[29] is reset, the data is sent in RGB 8:8:8 for- mat. Otherwise, the pixel data is sent in RGB 5:6:5 format which has been dithered by the processor. The other eight bits are used in conjunction with VID_DATA[7:0] to provide 16-bit video data. This bus is sampled by the PCLK input.
ENA_DISP	B1	I	Display Enable Input
			This signal qualifies active data on the pixel input port. It is used to qualify active pixel data for all display modes and configurations and is not specific to flat panel display.
Display CRT			
HSYNC	C6	I	Horizontal Sync Input
			This is the CRT horizontal sync input from the processor's display controller. It is used to indicate the start of a new video line. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data. A separate output (HSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
HSYNC_OUT	N1	0	Horizontal Sync Output
			This is the horizontal sync output to the CRT. It represents a delayed version of the input horizontal sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programmable.
VSYNC	B5	Ι	Vertical Sync Input
			This is the CRT vertical sync input from the processor's display controller. It is used to indicate the start of a new frame. This signal is pipelined for the appropriate number of clock stages to remain in sync with the pixel data. A separate output (VSYNC_OUT) is provided to re-drive the CRT and flat panel interfaces.
VSYNC_OUT	N2	0	Vertical Sync Output
			This is the vertical sync output to the CRT. It represents a delayed version of the input vertical sync signal with the appropriate pipeline delay relative to the pixel data. The pipeline delay and polarity of this signal are programmable.
DDC_SCL	M2	0	DDC Serial Clock
			This is the serial clock for the VESA Display Data Channel interface. It is used for monitoring communications. The DDC2B standard is supported by this interface.
DDC_SDA	M4	I/O	DDC Serial Data
			This is the bidirectional serial data signal for the VESA Display Data Chan- nel interface. It is used to monitor communications. The DDC2B standard is supported by this interface.
			The direction of this pin can be configured through F4BAR+Memory Offset 04h[24]: 0 = Input; 1 = Output.

2.2.11 Display Interface (Continued)

2.2.11 Display Interface (Continued)			
Signal Name	Pin No.	Pin Type	Description
IREF	R3	l Analog	VDAC Current Reference Input
(Video DAC)	90 DAC)		Connect a 680 ohm resistor between this pin and ${\rm AV}_{\rm SS}$ (analog ground for Video DAC).
EXTVREFIN	T2	l Analog	External Voltage Reference Pin
(Video DAC)			Connect this pin to a 1.235V voltage reference.
AV _{DD1} (DAC)	U1	I	Analog Power for Video DAC
AV _{DD2} (VREF)	Т3	Analog	These pins provide power to the analog portions of the Video DAC.
AV _{DD3} (DAC)	N4		A 47 μ F capacitor should be connected between the DAC analog power and DAC analog ground. Analog power is AV _{DD1} (pin U1) and AV _{DD3} (pin N4). Analog ground is AV _{SS1} (pin R2) and AV _{SS5} (pin P2).
AV _{SS1} (DAC)	R2	I	Analog Ground for Video DAC
AV _{SS2} (ICAP)	R4	Analog	These pins provide the ground plane connections to the analog portions of the Video DAC.
AV _{SS3} (VREF)	T4		A 47 µF capacitor should be connected between the DAC analog power and
AV _{SS4} (ICAP)	P1		DAC analog ground. Analog power is AV_{DD1} (pin U1) and AV_{DD3} (pin N4). Analog ground is AV_{SS1} (pin R2) and AV_{SS5} (pin P2).
AV _{SS5} (DAC)	P2		
IOUTR	P3	O Analog	Red DAC Output
(Video DAC)			Red analog output.
IOUTG	P4	O Analog	Green DAC Output
(Video DAC)			Green analog output.
IOUTB	R1	O Analog	Blue DAC Output
(Video DAC)			Blue analog output.
Display TFT/TV			
FP_DATA17/	F3	0	Limited ISA Mode: Flat Panel Data Port Line 17
MASTER#			Refer to FP_DATA[15:0] signal description.
		I	ISA Master Mode: Master
			Refer to Section 2.2.5 "ISA Bus Interface" on page 28 for this signal's defini- tion.
FP_DATA16/	H3	0	Limited ISA Mode: Flat Panel Data Port Line 16
SA_OE#			Refer to FP_DATA[15:0] signal description.
		0	ISA Master Mode: System Address Transceiver Output Enable
			Refer to Section 2.2.5 "ISA Bus Interface" on page 28 for this signal's defini- tion.

2.2.11 Display Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
FP_DATA[15:0]/	Refer	0	Limited ISA Mode: Flat Panel Data Port Lines 15 through 0
SA[15:0]	to Table 2-3		This is the data port to an attached active matrix TFT panel. This port may optionally be tied to a DSTN formatter chip, LVDS transmitter, or digital NTSC/PAL encoder.
			F4BAR+Memory Offset 04h[7] enables the flat panel data bus: 0 = FP_DATA[17:0] is forced low 1 = FP_DATA[17:0] is driven based upon power sequence control
		I/O	ISA Master Mode: System Address Bus Lines 15 through 0
			These pins function as SA[15:0] and the pins designated as SA/SD[15:0] function only as SD[15:0].
			Note that SA[19:16] are dedicated address pins and GPIO[7:4] function as SA[23:20] only.
FP_CLK	M1	0	Limited ISA Mode: Flat Panel Clock
			This is the clock for the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A cannot support TFT flat panels or TV controllers.
FP_CLK_EVEN	L3	0	Limited ISA Mode: Flat Panel Even Clock
			This is an optional output clock for a set of external latches used to de-multi- plex the flat panel data bus into two channels (odd/even). Typically this would be used to interface to a pair of LVDS transmitters driving an XGA resolution flat panel.
			F4BAR+Memory Offset 04h[12] enables the FP_CLK_EVEN output: 0 = Standard flat panel 1 = XGA flat panel
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC	C2	I	Limited ISA Mode: Flat Panel Horizontal Sync Input
			This is the horizontal sync input reference from the processor's display con- troller. The timing of this signal is independent of the standard (CRT) hori- zontal sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_HSYNC_OUT	E1	0	Limited ISA Mode: Flat Panel Horizontal Sync Output
/SMEMW#			This is the horizontal sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel horizontal sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Write
			Refer to Section 2.2.5 "ISA Bus Interface" on page 28 for this signal's definition.

2.2.11 Display Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
FP_VSYNC	C1	I	Limited ISA Mode: Flat Panel Vertical Sync Input
			This is the vertical sync input reference from the processor's display control- ler. The timing of this signal is independent of the standard (CRT) vertical sync input to allow a different timing relationship between the flat panel and an attached CRT.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_VSYNC_OUT	E3	0	Limited ISA Mode: Flat Panel Vertical Sync Output
/SMEMR#			This is the vertical sync for an attached active matrix TFT flat panel. This represents a delayed version of the input flat panel vertical sync signal with the appropriate pipeline delay relative to the pixel data.
			ISA Master Mode: System Memory Read
			Refer to Section 2.2.5 "ISA Bus Interface" on page 28 on for this signal's def- inition.
FP_DISP_	F2	0	Flat Panel Display Enable Output
ENA_OUT			This is the display enable for an attached active matrix TFT flat panel. This signal qualifies active pixel data on the flat panel interface.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_VDD	L2	0	Flat Panel VDD Enable
			This is the enable signal for the V_{DD} supply to an attached flat panel. It is under the control of power sequence control logic. A transition on bit 6 of the Display Configuration Register (F4BAR+Memory Offset 04h) initiates a power-up/down sequence.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.
FP_ENA_BKL	J4	0	Flat Panel Backlight Enable Output
			This is the enable signal for the backlight power supply to an attached flat panel. It is under control of the power sequence control logic.
			ISA Master Mode: No Function
			In the ISA Master mode of operation, the CS5530A can not support TFT flat panels or TV controllers.

2.2.11 Display Interface (Continued)

Signal Name	Pin No.	Pin Type	Description
Display MPEG			
VID_DATA[7:0]	C12, B12, A12, D11, C11, B13, C13, A11	I	Video Data Port This is the input data for a video (MPEG) or graphics overlay in its native form. For video overlay, this data is in an interleaved YUV 4:2:2 format. For graphics overlay, the data is in RGB 5:6:5 format. This port operates at the VID_CLK rate.
VID_CLK	A6	I	Video Clock
			This is the clock for the video port. This clock is completely asynchronous to the input pixel clock rate.
VID_VAL	B7	I	Video Valid
			This signal indicates that valid video data is being presented on the VID_DATA input port. If the VID_RDY signal is also asserted, the data will advance.
VID_RDY	B10	0	Video Ready
			This signal indicates that the CS5530A is ready to receive the next piece of video data on the VID_DATA port. If the VID_VAL signal is also asserted, the data will advance.

2.2.12 DCLK PLL

Signal Name	Pin No.	Pin Type	Description
PLLTEST	N23		PLLTEST
			Internal test pin. This pin should not be connected for normal operation.
PLLVAA	M25	I	Analog PLL Power (V _{DD})
		Analog	PLLVAA is the analog positive rail power connection to the PLL.
PLLAGD	N25	I	Analog PLL Ground (V _{SS})
		Analog	PLLAGD is the analog ground rail connection to the PLL.
PLLDVD	M23	I	Digital PLL Power (V _{DD})
		Analog	This pin is the digital V_{DD} power connection for the PLL.
PLLDGN	N26	I	Digital PLL Ground (V _{SS})
		Analog	This pin is the digital ground (V_{SS}) connection for the PLL.

2.2.13 Power, Ground, and No Connects

2.2.15 FOWEI, G	round, and No Co	milecis	1
Signal Name	Pin No.	Pin Type	Description
V _{DD}	Refer to	PWR	3.3V (nominal) Power Connection
	Table 2-3 (Total of 17)		Note that the USB power (V _{DD} _USB, AV _{DD} _USB) connections are listed in Section 2.2.8 "USB Interface" on page 33.
V _{SS}	Refer to	GND	Ground Connection
	Table 2-3 (Total of 38)		Note that the USB ground (AV _{SS} _USB) connection is listed in Section 2.2.8 "USB Interface" on page 33.
NC	Refer to		No Connection
	Table 2-3 (Total of 20)		These lines should be left disconnected. Connecting a pull-up/-down resistor or to an active signal could cause unexpected results and possible malfunctions.

2.2.14 Internal Test and Measurement

Signal Name	Pin No.	Pin Type	Description
TEST	D3	I	Test Mode
			TEST should be tied low for normal operation.

Geode[™] CS5530A

3.0 Functional Description

The Geode CS5530A I/O companion provides many support functions for a GX-series processor (i.e., GX1, GXLV, GXm). This chapter discusses the detailed operations of the CS5530A in two categories: system-level activities and operations/programming of the major functional blocks.

The system-level discussion topics revolve around events that affect the device as a whole unit and as an interface with other chips (e.g., processor): Topics include:

- Processor Interface
 - Display Subsystem Connections
 - PSERIAL Pin Interface
- PCI Bus Interface
 - PCI Initiator
 - PCI Target
 - Special Bus Cycles-Shutdown/Halt
 - PCI Bus Parity
 - PCI Interrupt Routing Support
 - Delayed Transactions
- Resets and Clocks
 - Resets
 - ISA Clock
 - DOT Clock
- Power Management
 - CPU Power Management
 - APM Support
 - Peripheral Power Management

All of the major functional blocks interact with the processor through the PCI bus, or via its own direct interface. The major functional blocks are divided out as:

- PC/AT Compatibility Logic
 - ISA Subtractive Decode
 - ISA Bus Interface
 - ROM Interface
 - Megacells
 - I/O Ports 092h and 061h System Control
 - Keyboard Interface Function
 - External Real-Time Clock Interface
- IDE Controller
 - IDE Interface Signals
 - IDE Configuration Registers
- XpressAUDIO
 - Subsystem Data Transport Hardware
 - VSA Technology Support Hardware
- Display Subsystem Extensions
 - Video Interface Configuration Registers
 - Video Accelerator
 - Video Overlay
 - Gamma RAM
 - Display Interface
- Universal Serial Bus Support
 - USB PCI Controller
 - USB Host Controller
 - USB Power Management

Note that this Functional Description section of the data book describes many of the registers used for configuration of the CS5530A; however, not all registers are reported in detail. Some tables in the following subsections show only the bits (not the entire register) associated with a specific function being discussed. For access, register, and bit information regarding all CS5530A registers refer to Section 4.0 "Register Descriptions" on page 140.

3.1 PROCESSOR INTERFACE

The CS5530A interface to a GX-series processor consists of seven miscellaneous connections, the PCI bus interface signals, plus the display controller connections. Figure 3-1 shows the interface requirements. Note that the PC/AT legacy pins NMI, WM_RST, and A20M are all virtual functions executed in SMM (System Management Mode) by the BIOS.

- PSERIAL is a one-way serial bus from the processor to the CS5530A used to communicate power management states and VSYNC information for VGA emulation.
- IRQ13 is an input from the processor indicating that a floating point error was detected and that INTR should be asserted.
- INTR is the level output from the integrated 8259 PICs and is asserted if an unmasked interrupt request (IRQn) is sampled active.
- SMI# is a level-sensitive interrupt to the processor that can be configured to assert on a number of different system events. After an SMI# assertion, SMM is entered and program execution begins at the base of the SMM address space. Once asserted, SMI# remains active until the SMI source is cleared.
- SUSP# and SUSPA# are handshake pins for implementing CPU Clock Stop and clock throttling.
- CPU_RST resets the CPU and is asserted for approximately 9 ms after the negation of POR#.
- PCI bus interface signals.
- Display subsystem interface connections.

Geode[™] CS5530A Geode[™] GX-Series I/O Companion Processor PSERIAL SERIALP IRQ13 IRQ13 INTR INTR SMI# SMI# SUSP# SUSP# SUSPA# SUSPA# CPU_RST RESET AD[31:0] AD[31:0] C/BE[3:0]# C/BE[3:0]# PAR PAR FRAME# FRAME# IRDY# IRDY# TRDY# TRDY# STOP# STOP# LOCK# LOCK# DEVSEL# DEVSEL# PERR# PFRR# SERR# SERR# REQ# REQ0# GNT# GNT0# PCLK PCLK DCLK DCLK HSYNC CRT_HSYNC CRT_VSYNC VSYNC FP_HSYNC FP_HSYNC FP_VSYNC FP_VSYNC ENA_DISP ENA_DISP VID VAL VID VAL VID_CLK VID_CLK VID_DATA[7:0] VID_DATA[7:0] VID RDY VID RDY Note PIXEL[23:0] PIXEL[17:0]

Note: Refer to Figure 3-3 on page 44 for correct interconnection of PIXEL lines with the processor.

Figure 3-1. Processor Signal Connections

Geode[™] CS5530A

Functional Description (Continued)

3.1.1 Display Subsystem Connections

When a GX-series processor is used in a system with the CS5530A, the need for an external RAMDAC is eliminated. The CS5530A contains the DACs, a video accelerator engine, and the TFT interface.

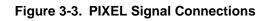

The CS5530A also supports both portable and desktop configurations. Figure 3-2 shows the signal connections for both types of systems.

Figure 3-3 on page 44 details how PIXEL[17:0] on the processor connects with PIXEL[23:0] of the CS5530A.

GeodeTM CS5530A

	PIXEL17		PIXEL23	
Geode™	PIXEL16		PIXEL22	Geode™ CS5530A
GX-Series	PIXEL15		PIXEL21	I/O Companior
Processor	PIXEL14		PIXEL20	
FIDCessor	PIXEL13		PIXEL19	
	PIXEL12		PIXEL18	
			PIXEL17	
		•	PIXEL16	
	PIXEL11	-	PIXEL15	
	PIXEL10		► PIXEL14	
	PIXEL9		PIXEL13	
	PIXEL8		PIXEL12	
	PIXEL7		PIXEL11	
	PIXEL6		PIXEL10	
		•	PIXEL9	
		•	PIXEL8	
	PIXEL5	▶	PIXEL7	
	PIXEL4		PIXEL6	
	PIXEL3		PIXEL5	
	PIXEL2		PIXEL4	
	PIXEL1		PIXEL3	
	PIXEL0	-	PIXEL2	
		•	PIXEL1	
			PIXEL0	

3.1.2 PSERIAL Pin Interface

The majority of the system power management logic is implemented in the CS5530A, but a minimal amount of logic is contained within the GX-series processor to provide information that is not externally visible (e.g., graphics controller).

The processor implements a simple serial communications mechanism to transmit the CPU status to the CS5530A. The processor accumulates CPU events in an 8-bit register (defined in Table 3-1) which it transmits serially every 1 to 10 μ s.

The packet transmitter holds the serial output pin (PSE-RIAL) low until the transmission interval timer has elapsed. Once the timer has elapsed, the PSERIAL pin is held high for two clocks to indicate the start of packet transmission. The contents of the Serial Packet Register are then shifted out starting from bit 7 down to bit 0. The PSERIAL pin is held high for one clock to indicate the end of packet transmission and then remains low until the next transmission interval. After the packet transmission is complete, the processor's Serial Packet Register's contents are cleared.

The processor's input clock is used as the clock reference for the serial packet transmitter.

Once a bit in the register is set, it remains set until the completion of the next packet transmission. Successive events of the same type that occur between packet transmissions are ignored. Multiple unique events between packet transmissions accumulate in this register. The processor transmits the contents of the serial packet only when a bit in the Serial Packet Register is set and the interval timer has elapsed.

For more information on the Serial Packet Register referenced in Table 3-1, refer to the appropriate GX-series processor data book.

The CS5530A decodes the serial packet after each transmission and performs the power management tasks related to video retrace.

Table 3-1.	GX-Series	Processor \$	Serial Packet
	Re	gister	

Bit	Description
7	Video IRQ: This bit indicates the occurrence of a video vertical sync pulse. This bit is set at the same time that the VINT (Vertical Interrupt) bit gets set in the DC_TIMING_CFG register. The VINT bit has a corresponding enable bit (VIEN) in the DC_TIM_CFG register.
6	CPU Activity: This bit indicates the occurrence of a level 1 cache miss that was not a result of an instruction fetch. This bit has a corresponding enable bit in the PM_CNTL_TEN register.
5:2	Reserved
1	Programmable Address Decode: This bit indicates the occurrence of a programmable memory address decode. The bit is set based on the values of the PM_BASE register and the PM_MASK register. The PM_BASE register can be initialized to any address in the full CPU address range.
0	Video Decode: This bit indicates that the CPU has accessed either the display controller registers or the graphics memory region. This bit has a corresponding enable bit in the PM_CNTRL_TEN.

3.1.2.1 Video Retrace Interrupt

Bit 7 of the "Serial Packet" can be used to generate an SMI whenever a video retrace occurs within the processor. This function is normally not used for power management but for SoftVGA routines.

Setting F0 Index 83h[2] = 1 (bit details on page 163) enables this function. A read only status register located at F1BAR+Memory Offset 00h[5] (bit details on page 183) can be read to see if the SMI was caused by a video retrace event.

3.2 PCI BUS INTERFACE

The PCI bus interface is compliant with the PCI Bus Specification Rev. 2.1.

The CS5530A acts as a PCI target for PCI cycles initiated by the processor or other PCI master devices, or as an initiator for DMA, ISA, IDE, and audio master transfer cycles. It supports positive decode for memory and I/O regions and is the subtractive decode agent on the PCI bus. The CS5530A also generates address and data parity and performs parity checking. A PCI bus arbiter is not part of the CS5530A; however, one is included in the GX-series processor.

The PCI Command Register, located at F0 Index 04h (Table 3-2), provides the basic control over the CS5530A's ability to respond and perform PCI bus accesses.

3.2.1 PCI Initiator

The CS5530A acts as a PCI bus master on behalf of the DMA controller or ISA, IDE, and audio interfaces. The REQ# and GNT# signals are used to arbitrate for the PCI bus.

Note: In a GX-series processor based system, the REQ#/GNT# signals of the CS5530A must connect to the REQ0#/GNT0# of the processor. This configuration ensures that the CS5530A is treated as a non-preemptable PCI master by the processor.

The CS5530A asserts REQ# in response to a bus mastering or DMA request for ownership of the PCI bus. GNT# is asserted by the PCI arbiter (i.e., processor) to indicate that access to the PCI bus has been granted to the CS5530A. The CS5530A then issues a grant to the DMA controller. This mechanism prevents any deadlock situations across the bridge. Once granted the PCI bus, the ISA master or DMA transfer commences.

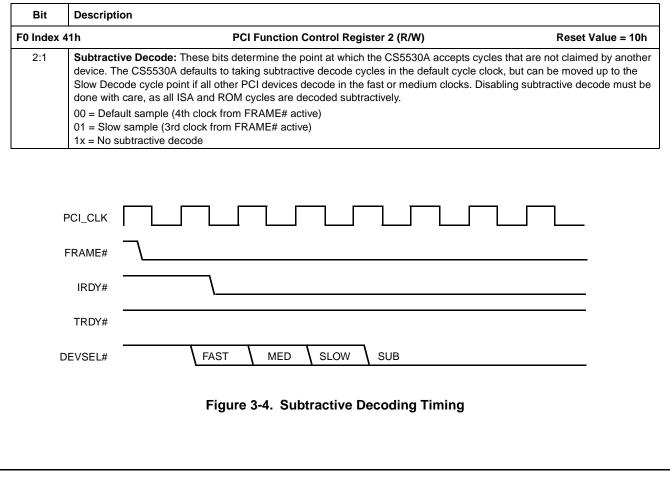
If an ISA master executes an I/O access, that cycle remains on the ISA bus and is not forwarded to the PCI bus. The CS5530A performs only single transfers on the PCI bus for legacy DMA cycles.

Bit	Description	
F0 Index	04h-05h PCI Command Register (R/W)	Reset Value = 000Fh
15:10	Reserved: Set to 0.	
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS disabled (always reads 0).	5530A is a master. It is always
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Default);	1 = Enable.
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is (always reads 0).	always disabled
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a parity error is detected. 0 = Disable (Default); 1 = Enable.	s a target, and to assert PERR# when
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS55 reads 0).	30A. It is always disabled (always
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.	e cycles, if the PCI Cache Line Size
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1 = En	able (Default) .
	This bit must be enabled to allow the CPU Warm Reset internal signal to be triggered	from a CPU Shutdown cycle.
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Enable	(Default).
	This bit must be set to 1.	
1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus.	0 = Disable; 1 = Enable (Default) .
0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable	e; 1 = Enable (Default) .

Table 3-2. PCI Command Register

3.2.2 PCI Target

The CS5530A positively decodes PCI transactions intended for any internal registers, the ROM address range, and several peripheral and user-defined address ranges. For positive-decoded transactions, the CS5530A is a medium responder. Table 3-3 lists the valid C/BE# encoding for PCI target transactions.


The CS5530A acts as the subtractive agent in the system since it contains the ISA bridge functionality. Subtractive decoding ensures that all accesses not positively claimed by PCI devices are forwarded to the ISA bus. The subtractive-decoding sample point can be configured as slow, default, or disabled via F0 Index 41h[2:1]. Table 3-4 shows these programming bits. Figure 3-4 shows the timing for subtractive decoding.

Note: I/O accesses that are mis-aligned so as to include address 0FFFFh and at least one byte beyond will "wrap" around to I/O address 0000h.

Table 3-3. PCI Command Encoding

C/BE[3:0]#	Command Type
0000	Interrupt Acknowledge
0001	Special Cycles: Shutdown, AD[15:0] = 0000
	Special Cycles: Halt, AD[15:0] = 0001
0010	I/O Read
0011	I/O Write
010x	Reserved
0110	Memory Read
0111	Memory Write
100x	Reserved
1010	Configuration Read
1011	Configuration Write
1100	Memory Read Multiple (memory read only)
1101	Reserved
1110	Memory Read Line (memory read only)
1111	Memory Write, Invalidate (memory write)

Table 3-4. Subtractive Decoding Related Bits

3.2.3 Special Bus Cycles–Shutdown/Halt

The PCI interface does not pass Special Bus Cycles to the ISA interface, since special cycles by definition have no destination. However, the PCI interface monitors the PCI bus for Shutdown and Halt Special Bus Cycles.

Upon detection of a Shutdown Special Bus Cycle, a WM_RST SMI is generated after a delay of three PCI clock cycles. PCI Shutdown Special Cycles are detected when C/BE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0000h during the data phase. C/BE[3:0]# are also properly asserted during the data phase.

Upon detection of a Halt Special Bus Cycle, the CS5530A completes the cycle by asserting TRDY#. PCI Halt Special Bus Cycles are detected when CBE[3:0]# = 0001 during the address phase and AD[31:0] = xxxx0001h during the data phase of a Halt cycle. CBE[3:0]# are also properly asserted during the data phase.

3.2.4 PCI Bus Parity

When the CS5530A is the PCI initiator, it generates address parity for read and write cycles. It checks data par-

ity for read cycles and it generates data parity for write cycles. The PAR signal is an even-parity bit that is calculated across 36 bits of AD[31:0] plus C/BE[3:0]#.

By default, the CS5530A does not report parity errors. However, the CS5530A detects parity errors during the data phase if F0 Index 04h[6] is set to 1. If enabled and a data parity error is detected, the CS5530A asserts PERR#. It also asserts SERR# if F0 Index 41h[5] is set to 1. This allows NMI generation.

The CS5530A also detects parity errors during the address phase if F0 Index 04h[6] is set. When parity errors are detected during the address phase, SERR# is asserted internally. Parity errors are reported to the CPU by enabling the SERR# source in I/O Port 061h (Port B) control register. The CS5530A sets the corresponding error bits in the PCI Status Register (F0 Index 06h[15:14]). Table 3-5 shows these programming bits.

If the CS5530A is the PCI master for a cycle and detects PERR# asserted, it generates SERR# internally.

Table 3-5. PERR#/SERR# Associated Register Bits

Bit	Description		
-0 Index	04h-05h	PCI Command Register (R/W)	Reset Value = 000Fh
6		he CS5530A to check for parity errors on PCI cycles for which it is a cted. 0 = Disable (Default) ; 1 = Enable.	target, and to assert PERR# when
-0 Index	c 06h-07h	PCI Status Register (R/W)	Reset Value = 0280h
15	Detected Parity Err Write 1 to clear.	or: This bit is set whenever a parity error is detected.	
14	Signaled System E Write 1 to clear.	rror: This bit is set whenever the CS5530A asserts SERR# active.	
0 Index	41h	PCI Function Control Register 2 (R/W)	Reset Value = 10h
5		RR#: Assert SERR# any time that PERR# is asserted or detected a be cascaded to NMI (SMI) generation in the system). 0 = Disable;	

3.2.5 PCI Interrupt Routing Support

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also know in industry terms as PIRQx#) to be mapped internally to any IRQ signal via register programming (shown in Table 3-6). Further details are supplied in Section 3.5.4.4 "PCI Compatible Interrupts" on page 101 regarding edge/level sensitivity selection.

3.2.6 Delayed Transactions

The CS5530A supports delayed transactions to prevent slow PCI cycles from occupying too much bandwidth and allows access for other PCI traffic.

Note: For systems which have only the GX-series processor and CS5530A on the PCI bus, system performance is improved if delayed transactions are disabled.

F0 Index 42h[5] and F0 Index 43h[1] are used to program this function. Table 3-7 shows these bit formats.

		Table 3-6. PCI Inter	rupt Steering Registers	5
Bit	Description			
F0 Index	5Ch	PCI Interrupt Stee	ring Register 1 (R/W)	Reset Value = 00
7:4	INTB# Target Interru	pt: Selects target interrupt for	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTA# Target Interrup	ot: Selects target interrupt for I	NTA#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
	ne target interrupt must fir mpatibility.	st be configured as level sens	tive via I/O Port 4D0h and 4D1	h in order to maintain PCI interrupt
F0 Index	5Dh	PCI Interrupt Stee	ring Register 2 (R/W)	Reset Value = 00
7:4	INTD# Target Interru	pt: Selects target interrupt for	NTD#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTC# Target Interru	ot: Selects target interrupt for	NTC#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
	ne target interrupt must fir mpatibility.	st be configured as level sens	tive via I/O Port 4D0h and 4D1	h in order to maintain PCI interrupt
		Table 3-7 Delay Tran	saction Programming E	Rits
Bit	Description			
F0 Index	-	PCI Function Cor	trol Register 3 (R/W)	Reset Value = ACI
5	Delaved Transaction	s: Allow delayed transactions	on the PCI bus. 0 = Disable; 1 =	= Enable.
v		•		

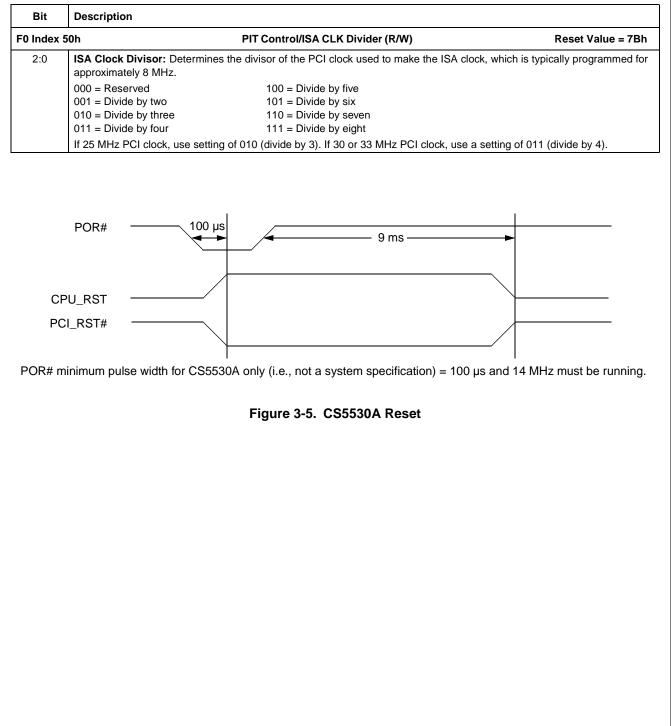
Table 3-6. PCI Interrupt Steering Registers

5	Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable Also see F0 Index 43h[1].	<u>.</u>
F0 Index 4	Sh USB Shadow Register (R/W)	Reset Value = 03h
1	PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allo 0 = Disable; 1 = Enable.	w the PCI bus to retry cycles.
	This bit works in conjunction with PCI bus delayed transactions bit. F0 Index 42h[5] must =	1 for this bit to be valid.

3.3 RESETS AND CLOCKS

The operations of resets and clocks in the CS5530A are described in this section of the Functional Description.

3.3.1 Resets

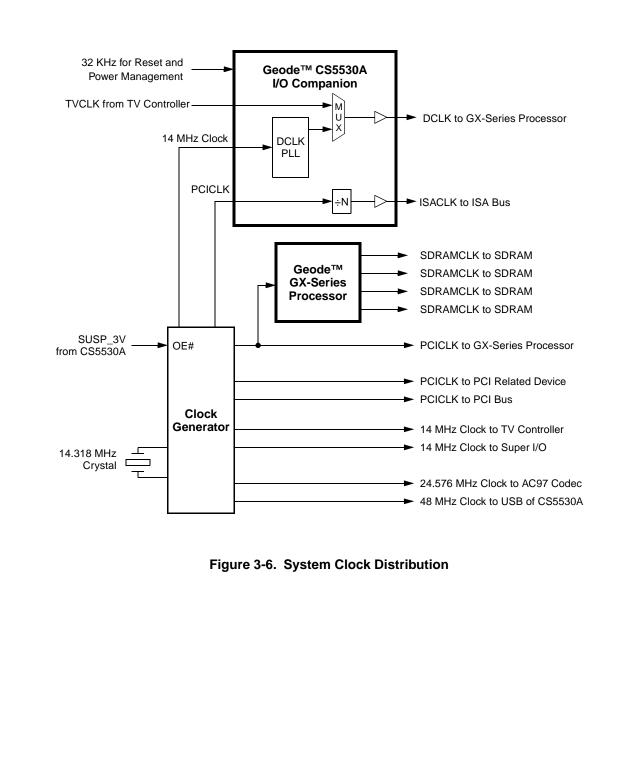

The CS5530A generates two reset signals, PCI_RST# to the PCI bus and CPU_RST to the GX-series processor. These resets are generated after approximately 100 μ s delay from POR# active as depicted in Figure 3-5.

At any state, Power-on/Resume/Reset, the 14.31818 MHz oscillator must be active for the resets to function.

3.3.2 ISA Clock

The CS5530A creates the ISACLK from dividing the PCI-CLK. For ISA compatibility, the ISACLK nominally runs at 8.33 MHz or less. The ISACLK dividers are programmed via F0 Index 50h[2:0] as shown in Table 3-8.

Table 3-8. ISACLK Divider Bits


3.3.3 DOT Clock

The DOT clock (DCLK) is generated from the 14.31818 MHz input (CLK_14MHZ). A combination of a phase locked loop (PLL), linear feedback shift register (LFSR) and divisors are used to generate the desired frequencies for the DOT clock. The divisors and LFSR are configurable through the F4BAR+Memory Offset 24h. The minimum frequency of DCLK is 10 MHz and the maximum is 200 MHz.

However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock.

For applications that do not use the GX-series processor's graphics subsystem, this is an available clock for general purpose use.

The system clock distribution for a CS5530A/GX-series processor based system is shown in Figure 3-6.

3.3.3.1 DCLK Programming

The PLL contains an input divider (ID), feedback divider (FD) and a post divider (PD). The programming of the dividers is through F4BAR+Memory Offset 24h (see Table 3-9 on page 53). The maximum output frequency is 300 MHz. The output frequency is given by equation #1:

Equation #1:

DCLK = [CLK_14MHZ * FD] ÷ [PD *ID]

Condition:

140 MHz < [DCLK * PD] < 300 MHz

Where:

CLK_14MHZ is pin P24 FD is derived from N see equation #2 and #3: PD is derived from bits [28:24] ID is derived from bits [2:0]

Equation #2:

If FD is an odd number then: $FD = 2^*N + 1$

Equation #3:

If FD is an even number then: $FD = 2^*N + 0$

Where:

N is derived from bits [22:12]

+1 is achieved by setting bit 23 to 1.

+0 is achieved by clearing bit 23 to 0.

Example

Define Target Frequency:

Target frequency = 135 MHz

Satisfy the "Condition":

(140 MHz < [DCLK * PD] < 300 MHz) 140 MHz < [135 MHz * 2] < 300 MHz Therefore PD = 2

Solve Equation #1:

DCLK = [CLK_14MHZ * FD] ÷ [PD *ID] 135 = [14.31818 * FD] ÷ [2 * ID] 135 = [7.159 * FD] ÷ ID 18.86 = FD ÷ ID Guess: ID = 7, Solve for FD FD = 132.02

Solve Equation #2 or #3:

FD = 2*N + 1 for odd FD FD = 2*N + 0 for even FD FD is 132, therefore even 132 = 2*N + 0N = 66

Summarize:

 $\label{eq:pd} \begin{array}{l} \text{PD} = 2\text{: Bits } [28\text{:}24] = 00111 \\ \text{ID} = 7\text{: Bits } [2\text{:}0] = 101 \\ \text{N} = 66\text{: Bits } [22\text{:}12] = 073\text{h (found in Table 3-10), clear} \\ \text{bit } 23 \end{array}$

Result:

DCLK = 135

The BIOS has been provided with a complete table of divisor values for supported graphics clock frequencies. Many combinations of divider values and VCO frequencies are possible to achieve a certain output clock frequency. These BIOS values may be adjusted from time to time to meet system frequency accuracy and jitter requirements. For applications that do not use the GX-series processor's graphics subsystem, this is an available clock for general purpose use.

The transition from one DCLK frequency to another is not guaranteed to be smooth or bounded; therefore, new divider coefficients should only be programmed while the PLL is off line in a situation where the transition characteristics of the clock are "don't care". The steps below describe (in order) how to change the DCLK frequency.

- 1) Program the new clock frequency.
- 2) Program Feedback Reset (bit 31) high and Bypass PLL (bit 8) high.
- 3) Wait at least 500 µs for PLL to settle.
- 4) Program Feedback Reset (bit 31) low.
- 5) Program Bypass PLL (bit 8) low.

Geode[™] CS5530A

Functional Description (Continued)

Table 3-9. DCLK Configuration Register

	DOT Clock Configuration	n Register (R/W)	Reset Value = 00000000h		
	PLL postscaler and feedback t description is provided in bit a	divider. 0 = Normal operation; 8.	1 = Reset.		
Half Clock: 0 = Enable; 1 =	Disable.				
			enerate the falling edge of the pos		
divider output to more closely	y approximate a 50% output d	uty cycle.			
Reserved: Set to 0.					
5-Bit DCLK PLL Post Divis	or (PD) Value: Selects value of	of 1 to 31.			
00000 = PD divisor of 8	01000 = PD divisor of 10	10000 = PD divisor of 9	11000 = PD divisor of 11		
00001 = PD divisor of 6	01001 = PD divisor of 20	10001 = PD divisor of 7	11001 = PD divisor of 21		
00010 = PD divisor of 18	01010 = PD divisor of 14	10010 = PD divisor of 19	11010 = PD divisor of 15		
00011 = PD divisor of 4	01011 = PD divisor of 26	10011 = PD divisor of 5	11011 = PD divisor of 27		
00100 = PD divisor of 12 00101 = PD divisor of 16	01100 = PD divisor of 22 01101 = PD divisor of 28	10100 = PD divisor of 13 10101 = PD divisor of 17	11100 = PD divisor of 23 11101 = PD divisor of 29		
00110 = PD divisor of 24	01110 = PD divisor of 30	10110 = PD divisor of 25	11110 = PD divisor of 31		
00111 = PD divisor of 2	01111 = PD divisor of 1*	10111 = PD divisor of 3	11111 = Reserved		
*See bit 11 description.					
		Divisor) parameter in equatio	n (see Note)		
0 = Add 0 to FD; $1 = Add 1$ to	o FD.				
	the equation (see Note). It is u For all values of N, refer to Ta		DCLK PLL VCO feedback divisor		
CLK_ON: 0 = PLL disable; 1 = PLL enable. If PD = 1 (i.e., bits [28:24] = 01111) the PLL is always enabled and cannot be disabled by this bit.					
DOT Clock Select: 0 = DCL	.K; 1 = TV_CLK.				
Reserved: Set to 0					
Bypass PLL: Connects the input of the PLL directly to the output of the PLL. 0 = Normal Operation; 1 = Bypass					
	t of the PLL bypasses the PLL e control voltage to be driven to		oltage, which in turn powers down		
Reserved: Set to 0.					
Reserved (Read Only): Wri	te as read				
Reserved: Set to 0.					
PLL Input Divide (ID) Value	: Selects value of 2 to 9 (see I	Note).			
000 = ID divisor of 2	100 = ID divisor of 6	001 = ID divisor of 3	101 = ID divisor of 7		
010 = ID divisor of 4	110 = ID divisor of 8	011 = ID divisor of 5	111 = ID divisor of 9		
To calculate DCLK output frequ	uency:				
Equation #1: DCLK = [CLK_14					
Condition: 140 MHz < [DCLK *					
Where: CLK_14M	HZ is pin P24				
	ved from N see equation #2 ar	nd #3			
	ved from bits [28:24]				
	red from bits [2:0]				
Equation #2. If ED is an odd nu					
Equation #3: If FD is an even r	• •				
Equation #3: If FD is an even r Where: N is derive	5veu by setting bit 23 to 1.				
Equation #3: If FD is an even r Where: N is derive +1 is achie	eved by clearing bit 23 to 0				
Equation #2	: If FD is an even r here: N is derive	+1 is achieved by setting bit 23 to 1.	: If FD is an even number then: FD = 2*N +0 here: N is derived from bits [22:12]		

- --46500 _ _

GeodeTM CS5530A

		-	Table 3-	-10. F4	4BAR+I	Memor	y Offse	et 24h[22:12]	D	ecod	e (Valu	e	of "N	l")		
N	Reg. Value	N	Reg. Value	N	Reg. Value	N	Reg. Value	N	Reg. Value		N	Reg. Value		N	Reg. Value	N	Reg. Value
400	33A	349	23	298	331	247	7D0	196	143		145	551	Ī	94	19E	43	161
399	674	348	47	297	662	246	7A1	195	286		144	2A3	ĺ	93	33C	42	2C2
398	4E8	347	8F	296	4C4	245	743	194	50D		143	547		92	678	41	585
397	1D0	346	11F	295	188	244	687	193	21B		142	28F		91	4F0	40	30B
396	3A0	345	23E	294	310	243	50E	192	437		141	51F		90	1E0	39	616
395	740	344	47D	293	620	242	21D	191	6E		140	23F		89	3C0	38	42C
394	681	343	FA	292	440	241	43B	190	DD		139	47F		88	780	37	58
393	502	342	1F5	291	80	240	76	189	1BB		138	FE		87	701	36	B1
392	205	341	3EA	290	101	239	ED	188	376		137	1FD		86	603	35	163
391	40B	340	7D4	289	202	238	1DB	187	6EC		136	3FA		85	406	34	2C6
390	16	339	7A9	288	405	237	3B6	186	5D8		135	7F4		84	С	33	58D
389	2D	338	753	287	А	236	76C	185	3B1		134	7E9		83	19	32	31B
388	5B	337	6A7	286	15	235	6D9	184	762		133	7D3		82	33	31	636
387	B7	336	54E	285	2B	234	5B2	183	6C5		132	7A7		81	67	30	46C
386	16F	335	29D	284	57	233	365	182	58A		131	74F		80	CF	29	D8
385	2DE	334	53B	283	AF	232	6CA	181	315		130	69F		79	19F	28	1B1
384	5BD	333	277	282	15F	231	594	180	62A		129	53E		78	33E	27	362
383	37B	332	4EF	281	2BE	230	329	179	454		128	27D		77	67C	26	6C4
382	6F6	331	1DE	280	57D	229	652	178	A8		127	4FB		76	4F8	25	588
381	5EC	330	3BC	279	2FB	228	4A4	177	151		126	1F6		75	1F0	24	311
380	3D9	329	778	278	5F7	227	148	176	2A2		125	3EC		74	3E0	23	622
379	7B2	328	6F1	277	3EF	226	290	175	545		124	7D8		73	7C0	22	444
378	765	327	5E2	276	7DE	225	521	174	28B		123	7B1		72	781	21	88
377	6CB	326	3C5	275	7BD	224	243	173	517		122	763		71	703	20	111
376	596	325	78A	274	77B	223	487	172	22F		121	6C7		70	607	19	222
375	32D	324	715	273	6F7	222	10E	171	45F		120	58E		69	40E	18	445
374	65A	323	62B	272	5EE	221	21C	170	BE		119	31D		68	1C	17	8A
373	4B4	322	456	271	3DD	220	439	169	17D		118	63A		67	39	16	115
372	168	321	AC	270	7BA	219	72	168	2FA		117	474		66	73	15	22A
371	2D0	320	159	269	775	218	E5	167	5F5		116	E8		65	E7	14	455
370	5A1	319	2B2	268	6EB	217	1CB	166	3EB		115	1D1		64	1CF	13	AA
369	343	318	565	267	5D6	216	396	165	7D6		114	3A2		63	39E	12	155
368	686	317	2CB	266	3AD	215	72C	164	7AD		113	744		62	73C	11	2AA
367	50C	316	597	265	75A	214	659	163	75B		112	689		61	679	10	555
366	219	315	32F	264	6B5	213	4B2	162	6B7		111	512		60	4F2	9	2AB
365	433	314	65E	263	56A	212	164	161	56E		110	225		59	1E4	8	557
364	66	313	4BC	262	2D5	211	2C8	160	2DD		109	44B		58	3C8	7	2AF
363	CD	312	178	261	5AB	210	591	159	5BB		108	96		57	790	6	55F
362	19B	311	2F0	260	357	209	323	158	377		107	12D		56	721	5	2BF
361	336	310	5E1	259	6AE	208	646	157	6EE		106	25A		55	643	4	57F
360	66C	309	3C3	258	55C	207	48C	156	5DC		105	4B5		54	486	3	2FF
359	4D8	308	786	257	2B9	206	118	155	3B9		104	16A		53	10C	2	5FF
358	1B0	307	70D	256	573	205	230	154	772		103	2D4		52	218	1	3FF
357	360	306	61B	255	2E7	204	461	153	6E5		102	5A9		51	431		
356	6C0	305	436	254	5CF	203	C2	152	5CA		101	353	Ī	50	62		
355	580	304	6C	253	39F	202	185	151	395		100	6A6	ļ	49	C5		
354	301	303	D9	252	73E	201	30A	150	72A	1	99	54C	ľ	48	18B		
353	602	302	1B3	251	67D	200	614	149	655	1	98	299	ĺ	47	316		
352	404	301	366	250	4FA	199	428	148	4AA]	97	533	Ī	46	62C		
351	8	300	6CC	249	1F4	198	50	147	154	1	96	267	ļ	45	458		
350	11	299	598	248	3E8	197	A1	146	2A8]	95	4CF	ļ	44	B0		
										-							

3.4 POWER MANAGEMENT

The hardware resources provided by a combined CS5530A/GX-series processor based system support a full-featured power management implementation. The extent to which these resources are employed depends on the application and the discretion of the system designer.

Power management resources can be grouped according to the function they enable or support. The major functions are as follows:

- CPU Power Management
 - On
 - Active Idle
 - Suspend
 - 3 Volt Suspend
 - Off
 - Save-to-Disk/Save-to-RAM
 - Suspend Modulation
- APM Support
- Peripheral Power Management
 - Device Idle Timers and Traps
 - General Purpose Timers
 - ACPI Timer Register
 - General Purpose I/O Pins
 - Power Management SMI Status Reporting Registers
 - Device Power Management Register Programming Summary

Included in the following subsections are details regarding the registers used for configuring power management features. The majority of these registers are directly accessed through the PCI configuration register space designated as Function 0 (F0). However, included in the discussions are references to F1BAR+Memory Offset 10h. This refers to the registers accessed through a base address register in Function 1 (F1) at Index 10h (F1BAR). F1BAR sets the base address for the SMI status and ACPI timer support registers as shown in Table 3-11.

3.4.1 CPU Power Management

The three greatest power consumers in a system are the display, hard drive, and CPU. The power management of the first two is relatively straightforward and is discussed in Section 3.4.3 "Peripheral Power Management" on page 63. CPU power management is supported through several mechanisms resulting in five defined system power conditions:

- On
- Active Idle
- Suspend
- 3 Volt Suspend
- Off

There are also three derivative power conditions defined:

- Suspend Modulation
 - Combination of On and Suspend
- Save-to-Disk
 - Off with the ability to return back to the exact system condition without rebooting
- Save-to-RAM
 - Extreme 3 Volt Suspend with only the contents of RAM still powered

3.4.1.1 On

System is running and the CPU is actively executing code.

Table 3-11. Base Address Register (F1BAR) for SMI Status and ACPI Timer Support

Bit	Description	
F1 Index 1	x 10h-13h Base Address Register — F1BAR (R/W) Reset Value	= 00000000h
indicating a ues. The up	ster sets the base address of the memory mapped SMI status and ACPI timer related registers. Bits [7:0] are rea g a 256-byte memory address range. Refer to Table 4-16 for the SMI status and ACPI timer registers bit formats upper 16 bytes are always mapped to the ACPI timer, and are always memory mapped.	
	he ACPI Timer Count Register is accessible through F1BAR+Memory Offset 1Ch and I/O Port 121Ch.	
31:8	SMI Status/Power Management Base Address	
7:0	Address Range (Read Only)	

3.4.1.2 Active Idle

This state is the most powerful power management state because it is an operational state. The CPU has executed a HLT instruction and has asserted the SUSPA# signal. The operating system has control of the entry of this state because the OS has either executed the HLT or made a BIOS call to indicate idle, and the BIOS executed the HLT instruction. The display refresh subsystem is still active but the CPU is not executing code. The clock is stopped to the processing core in this state and considerable power is saved in the processor. The CS5530A takes advantage of this power state by stopping the clock to some of the internal circuitry. This power saving mode can be enabled/disabled by programming F0 Index 96h[4] (see Table 3-12). The CS5530A can still make bus master requests for IDE, audio, USB, and ISA from this state. When the CS5530A or any other device on the PCI bus asserts REQ#, the CPU deasserts SUSPA# for the duration of REQ# activity. Once REQ# has gone inactive and all PCI cycles have stopped, the CPU reasserts SUSPA#. SUSPA# remains active until

the CPU receives an INTR or SMI event which ends the CPU halt condition.

3.4.1.3 Suspend

This state is similar to the Active Idle state except that the CPU enters this state because the CS5530A asserted SUSP#. The CS5530A deasserts SUSP# when an INTR or SMI event occurs. The Suspend Configuration register is shown in Table 3-12, however, also see the tables listed below for a more complete understanding on configuring the Suspend state.

- F0 Index BCh in Table 3-13 "Clock Stop Control Register" on page 57.
- Related registers in Table 3-14 "Suspend Modulation Related Registers" on page 59.
- F0 Index AEh in Table 3-16 "APM Support Registers" on page 62.

Bit	Description	
F0 Index	96h Suspend Configuration Register (R/W)	Reset Value = 00h
7:5	Reserved: Set to 0.	
4	Power Savings Mode: 0 = Enable; 1 = Disable.	
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include	d.
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a G Suspend. 0 = Disable; 1 = Enable.	X-series processor during
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI	occurs.
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Suspen occurs.	d Modulation when an SMI
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Offset 08h).	Register (F1BAR+Memory
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Mana technology and power management operations occur at full speed. Two methods for accomplise the SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable the SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The late The IRQ speedup method is provided for software compatibility with earlier revisions of the CSE if the Suspend Modulation feature is disabled (bit 0 = 0).	hing this are either to map e Suspend Modulation until atter is the preferred method
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.	
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed OFF/ON Count Registers (F0 Index 94h/95h).	in the Suspend Modulation

Table 3-12. Suspend Configuration Register

3.4.1.4 3 Volt Suspend

This state is a non-operational state. To enter this state the display must have been previously turned off. This state is usually used to put the system into a deep sleep to conserve power and still allow the user to resume where they left off.

The CS5530A supports the stopping of the CPU and system clocks for a 3 Volt Suspend state. If appropriately configured, via the Clock Stop Control Register (F0 Index BCh, see Table 3-13), the CS5530A asserts the SUSP_3V pin after it has gone through the SUSP#/SUSPA# handshake. The SUSP_3V pin is a state indicator, indicating that the system is in a low-activity state. This indicator can be used to put the system into a low-power state (the system clock can be turned off).

The SUSP_3V pin is intended to be connected to the output enable of a clock generator or buffer chip, so that the clocks to the CPU and the CS5530A (and most other system devices) are stopped. The CS5530A continues to decrement all of its device timers and respond to external SMI interrupts after the input clock has been stopped, as long as the 32 KHz clock continues to oscillate. Any SMI event or unmasked interrupt pin causes the CS5530A to deassert the SUSP_3V pin, restarting the system clocks. As the CPU or other device might include a PLL, the CS5530A holds SUSP# active for a pre-programmed period of delay (the PLL re-sync delay) that varies from 0 to 15 ms. After this period has expired, the CS5530A deasserts SUSP#, stopping Suspend. SMI# is held active for the entire period, so that the CPU reenters SMM when the clocks are restarted.

Note: The SUSP_3V pin can be active either high or low. The pin is an input during POR, and is sampled to determine its inactive state. This allows a designer to match the active state of SUSP_3V to the inactive state for a clock driver output enable with a pull-up or pull-down resistor.

3.4.1.5 Off

The system is off and there is no power being consumed by the processor or the CS5530A.

p ti		Cleak Stan Cant		
p ti	Delaw The prog	Clock Stop Cont	rol Register (R/W)	Reset Value = 00h
Т	oin is deasserted to the ion. This delay is only	ne CPU. This delay is designed v invoked if the STP_CLK bit (bit	to allow the clock chip and CP	a break event occurs before the SUSP U PLL to stabilize before starting exect
	The four-bit field allow	vs values from 0 to 15 ms.		
-	0000 = 0 ms	0100 = 4 ms	1000 = 8 ms	1100 = 12 ms
-	0001 = 1 ms	0101 = 5 ms	1001 = 9 ms	1101 = 13 ms
-	0010 = 2 ms	0110 = 6 ms	1010 = 10 ms	1110 = 14 ms
0	0011 = 3 ms	0111 = 7 ms	1011 = 11 ms	1111 = 15 ms
3:1 F	Reserved: Set to 0.			
0 0	CPU Clock Stop: 0 =	Normal SUSP#/ SUSPA# hand	shake; 1 = Full system Susper	nd.
0 = Sl break/ 1 = Sl syster	USP#/SUSPA# hand /resume event occurs USP#/SUSPA# hand m clocks are stopped	s, it releases the CPU halt condi shake occurs and the SUSP_3V	to a low-power state, and the s tion. pin is asserted, thus invoking ne SUSP_3V pin will deassert,	system clocks are not stopped. When a full system Suspend (both CPU and the PLL delay programmed in bits [7:4

Table 3-13. Clock Stop Control Register

3.4.1.6 Suspend Modulation

Suspend Modulation is a derivative of the On and Suspend states and works by asserting and de-asserting the SUSP# pin to the CPU for a configurable period and duty cycle. By modulating the SUSP# pin, an effective reduction in frequency is achieved. Suspend Modulation is the system power management choice of last resort. However, it is an excellent choice for thermal management. If the system is expected to operate in a thermal environment where the processor could overheat, then Suspend Modulation could be used to reduce power consumption in the overheated condition and thus reduce the processor's temperature.

When used as a power management state, Suspend Modulation works by assuming that the processor is idle unless external activity indicates otherwise. This approach effectively slows down the processor until external activity indicates a need to run at full speed, thereby reducing power consumption.

Suspend Modulation serves as the primary CPU power management mechanism when APM or some other power management software strategy is not present. It can also act as a backup for situations where the power management scheme does not correctly detect an Idle condition in the system.

In order to provide high-speed performance when needed, the SUSP# pin modulation can be temporarily disabled any time system activity is detected. When this happens, the processor is "instantly" converted to full speed for a programmed duration. System activities in the CS5530A are defined in hardware as: any unmasked IRQ, accessing Port 061h, SMI, and/or accessing the graphics controller. Since the graphics controller is integrated in the GX-series processor, the indication of graphics activity is sent to the CS5530A via the serial link (see Section 3.1.2 "PSERIAL Pin Interface" on page 45 for more information on serial link) and is automatically decoded. Graphics activity is defined as any access to the VGA register space, the VGA frame buffer, the graphics accelerator control registers and the configured graphics frame buffer.

The automatic speedup events (IRQ, SMI, and/or graphics) for Suspend Modulation should be used together with software-controlled speedup registers for major I/O events such as any access to the floppy disk controller, hard disk drive, or parallel/serial ports, since these are indications of major system activities. When major I/O events occur, Suspend Modulation can be temporarily disabled using the procedures described in the following subsections.

Bus master internal (Ultra DMA/33, Audio, USB, or ISA) or external requests do not directly affect the Suspend Modulation programming.

Configuring Suspend Modulation

Control of the Suspend Modulation feature is accomplished using the Suspend Modulation OFF Count Register, the Suspend Modulation ON Count Register, and the Suspend Configuration Register (F0 Index 94h, 95h, and 96h, respectively).

The Power Management Enable Register 1 (F0 Index 80h) contains the enables for the individual activity speedup timers.

Bit 0 of the Suspend Configuration Register (F0 Index 96h) enables the Suspend Modulation feature. Bit 1 controls how SMI events affect the Suspend Modulation feature. In general this bit should be set to a 1, which causes SMIs to disable Suspend Modulation until it is re-enabled by the SMI handler.

The Suspend Modulation OFF and ON Count Registers (F0 Index 94h and 95h) control two 8-bit counters that represent the number of 32 μ s intervals that the SUSP# pin is asserted and then deasserted to the processor. These counters define a ratio which is the effective frequency of operation of the system while Suspend Modulation is enabled.

$$F_{eff} = F_{GX86} x$$
 Off Count
On Count + Off Count

The IRQ and Video Speedup Timer Count registers (F0 Index 8Ch and 8Dh) configure the amount of time which Suspend Modulation is disabled when the respective events occur.

SMI Speedup Disable

If the Suspend Modulation feature is being used for CPU power management, the occurrence of an SMI disables the Suspend Modulation function so that the system operates at full speed while in SMM. There are two methods used to invoke this via bit 1 of the Suspend Configuration Register.

If F0 Index 96h[1] = 0: Use the IRQ Speedup Timer (F0 Index 8Ch) to temporarily disable Suspend Modulation when an SMI occurs.

If F0 Index 96h[1] = 1: Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Register (F1BAR+Memory Offset 08h).

The SMI Speedup Disable Register prevents VSA technology software from entering Suspend Modulation while operating in SMM. The data read from this register can be ignored. If the Suspend Modulation feature is disabled, reading this I/O location has no effect.

Table 3-14 shows the bit formats of the Suspend Modulation related registers

Table 3-14. Suspend Modulation Related Registers

4 Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) from the GX. cessor disables clock throttling (via SUSP#/SUSP# handshake) for a configurable duration when the system is p aged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection external VGA access (38xh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 02th/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count Register (R/W) Reset Va 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tim Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upo tion, no SMI is generated; the Suspend Modulation OFC Count Register (R/W)	4 Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) from the GX-series p cessor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power m aged using CPU Suspend modulation. 0 = Disable; 1 = Enable. 7 IRQ Speedup: Any unmasked IRQ (per I/O Port 021th/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021th/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vie access occurs, the Suspend Modulation of perfectin quertice, permititing full-performance oper	4 Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) from the GX-series p cessor disables clock throttling (via SUSP#/SUSP# handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. 7 The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (38xh, 3Cxh, 3Dxh and A000h-87FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. F0 Index 8Ch IRQ Speedup Timer Count Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer: timebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the I/Ge speedup timer. It is loaded into the timer when Suspend Modulation begins again. The IRQ speedup timer stimebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: This register (PO Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation dive 60[0] = 1) and any access to the graphics contro	4 Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) from the GX-series p cessor disables clock throttling (via SUSP#/SUSP# Andshake) for a configurable duration when the system is power ma aged using CPU Suspend modulation. 0 = Disable: 1 = Enable. 7 The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (38xh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non- standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# hand- shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable: 1 = Enable. F0 Index 8Ch IRQ Speedup Timer Count Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic: value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h(0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation Degins inhibinted, permitting full-perform	Bit	Description	
cessor disables clock throttling (via SUSP#/SUSP&# handshake) for a configurable duration when the system is p aged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. F0 Index 8Ch IRQ Speedup Timer Count Register (RW) Reset Va 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tir Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 06th occurs. When 1 occurs, the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Va 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expirations, a typical value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Va <tr< th=""><th>cessor disables clock throttling (vii SUSP#/SUSPA# handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non standard, but it does allow the power management routines to support an external VGA chip. IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/OA1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Reset Value = 00 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h(0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occu</th><th>cessor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061 hoccurs. When the even occurs, the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation and exessered to the set on the suspend modulation of the set on the set on the suspend Modulation of the set on the set on the suspend Modulation the dives 96h[0] = 1) and any access controle</th><th>cessor disables clock throttling (via SUSP#/SUSP#4 handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSP## handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: Register (RW) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer where Suspend Modulation is enabled (F0 Index 96h(0] = 1) and an INTR or an access to I/O Port 061 hoccurs. When a wide is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SM is generated; the Suspend Modulation Degins again. The IRQ speedup timer. It is loaded int</th><th>F0 Index 8</th><th>Dh Power Management Enable Register 1 (R/W)</th><th>Reset Value = 00h</th></tr<>	cessor disables clock throttling (vii SUSP#/SUSPA# handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non standard, but it does allow the power management routines to support an external VGA chip. IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/OA1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Reset Value = 00 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h(0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S access occu	cessor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061 hoccurs. When the even occurs, the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation and exessered to the set on the suspend modulation of the set on the set on the suspend Modulation of the set on the set on the suspend Modulation the dives 96h[0] = 1) and any access controle	cessor disables clock throttling (via SUSP#/SUSP#4 handshake) for a configurable duration when the system is power maged using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSP## handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: Register (RW) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer where Suspend Modulation is enabled (F0 Index 96h(0] = 1) and an INTR or an access to I/O Port 061 hoccurs. When a wide is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SM is generated; the Suspend Modulation Degins again. The IRQ speedup timer. It is loaded int	F0 Index 8	Dh Power Management Enable Register 1 (R/W)	Reset Value = 00h
external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tim Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When a occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiratio is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Va 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into th when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. Wh access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon tion, no SMI is generated; the Suspend Modulation DFF Count Register (R/W) Reset Va 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# µ deasserted to	external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/OA1h) or SMI disables clock throttling (via SUSP#/SUSPA# hand-shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h(0) = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. 0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated: the Suspend Modulation logic is inhibited, permitting full-performanc	external VGA access (3Bxh, 3Cxh, 3Cxh, 3Cxh, and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup, Any unmasked IRQ (per I/O Port 021/N0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# hand-shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vid access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation Sequence Sequence Sequence Secuence S	external VGA access (38xh, 3Cxh, 3Cxh, 3Cxh, and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip. 3 IRQ Speedup. Twy unmasked IRQ (per I/O POR 021/h0/A1h) or SMI disables clock throtting (via SUSP#/SUSPA# hand-shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. F0 Index 8Ch IRQ Speedup Timer Count Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer wher Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation ops again. The video sp	4	cessor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration v	, , ,
shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Reset Va F0 Index 8Ch IRQ Speedup Timer Count: Register (R/W) Reset Va 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tim Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When 1 occurs, the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. Reset Va 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into th when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upot tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Va 7:0 Suspend Signal Deaserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# µ deasserted to the GX-series procesesor. This timer, together with the Suspend Modulation	shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable: The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). Index 8Ch IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation logins again. The IRQ speedup timer's timebase is 1 ms. 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer value here would be 2 to 4 ms. 7:10 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer of access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 5 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will the deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 9b,), perform the Suspend Modulation ON Count Register (P0 Index 9b,), p	shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable: 0 = Disable: The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the even occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no Si is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vida access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SNI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 5 to 10 00 ms. Index 94h Suspend Modulation DefF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index SP, h), perform the Suspend Modulation CPU power management. The ratio of the on-to	shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable: 1 = Enable. The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch). F0 Index 8Ch IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer wher Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the event occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SII is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 5 bit to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b		external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported	ed. This configuration is non-
F0 Index 8Ch IRQ Speedup Timer Count Register (R/W) Reset Va 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tim suspend Modulation is enabled (F0 Index 96h(0] = 1) and an INTR or an access to I/O Port 06th occurs. When 1 occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiratio is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into th when Suspend Modulation is enabled (F0 Index 96h(0] = 1) and any access to the graphics controller occurs. Wh access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upo tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Va 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# if deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (FW) 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# if deasserted to the GX-series processor. This timer, together with the Susped peedup	Ondex 8Ch IRQ Speedup Timer Count: Register (R/W) Reset Value = 0 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. 0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will te deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend M	F0 Index 8Ch IRQ Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SM is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 5 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event	F0 Index 8Ch IRQ Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer wher Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the event occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typicar value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer is timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock fr	3	shake) for a configurable duration when the system is power managed using CPU Suspend	
7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the tir Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When i occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiratio is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Va 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Va 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# µ deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (FU 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count set effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups. <	7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer whe Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. 0 Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vic access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer, together with the Suspend Modulation ON Count Register	7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the even occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count: Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power managerment. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU	7:0 IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the timer wher Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the event occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typical value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs.		The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Ind	lex 8Ch).
Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Va 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. What access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Va 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# [deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (R/W) Reset Va 7:0 Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speed	Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the ever occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no S is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. D Index 8Dh Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation begins again. The video speedup timer is timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON	Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the even occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no Si is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typic value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SM is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (R/W) 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Susp	Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. When the event occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon expiration, no SI is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to system interrupts for full-speed interrupt processing. A typica value here would be 2 to 4 ms. F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted. The suspend Modulation function for CPU power management. The ratio of the on-	F0 Index 8	Ch IRQ Speedup Timer Count Register (R/W)	Reset Value = 00h
F0 Index 8DhVideo Speedup Timer Count Register (R/W)Reset Va7:0Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into th when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. Wh access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upo tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms.Index 94hSuspend Modulation OFF Count Register (R/W)Reset Va7:0Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# p deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups.Index 95hSuspend Modulation ON Count Register (R/W)Reset Va7:0Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pi asserted. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups.7:0Suspend Modulation ON Count Register (R/W)Reset Va	O Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vid access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will the deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation ON Count Register (R/W) 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Mo	F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b asserted. This timer, together with the Suspend Modulation ON Count Register (R/W) reset Value = 00 7:0 Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspe	F0 Index 8Dh Video Speedup Timer Count Register (R/W) Reset Value = 00 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation ON Count Register (R/W) 7:0 Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This	7:0	Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port of occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 This speedup mechanism allows instantaneous response to system interrupts for full-speed	061h occurs. When the event CPU. Upon expiration, no SM ms.
7:0Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into th when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. Wh access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing tions. A typical value here would be 50 to 100 ms.Index 94hSuspend Modulation OFF Count Register (R/W)Reset Va7:0Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# p deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (FC 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups.7:0Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# p asserted. This timer, together with the Suspend power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups.7:0Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Sus	 7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. dex 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will the deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. dex 95h Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation ON Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation for CPU po	7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b asserted. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OF CPU po	7:0 Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is loaded into the timer when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics controller occurs. When a vide access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of the CPU. Upon expiration, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timebase is 1 ms. This speedup mechanism allows instantaneous response to video activity for full speed during video processing calculations. A typical value here would be 50 to 100 ms. Index 94h Suspend Modulation OFF Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h). 7:0 Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Susp	E0 Index 8		Rosot Value – 00h
 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# processor. This timer, together with the Suspend Modulation ON Count Register (FG 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups. Index 95h Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend F0 Index 94h) 	 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 μs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. dex 95h Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 μs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend M ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power management. The speedup events are IRQ speedups and video speedups. 	 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will b deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. Index 95h Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video 	 7:0 Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. Index 95h Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power management. The ratio of the on-to-off count sets up an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. 		Video Speedup Timer Count: This register holds the load value for the Video speedup time when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics of access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's This speedup mechanism allows instantaneous response to video activity for full speed during the speedup timer's the speedup mechanism allows instantaneous response to video activity for full speed during the speedup timer's the speedup mechanism allows instantaneous response to video activity for full speed during the speedup timer's the speedup mechanism allows instantaneous response to video activity for full speed during the speedup timer's the speedup timer's the speedup timer's timer's the speedup timer's timer'	er. It is loaded into the timer controller occurs. When a vide ion of the CPU. Upon expira- timebase is 1 ms.
deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (FG 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and speedups. Index 95h Suspend Modulation ON Count Register (R/W) Reset Va 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Sus	deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. dex 95h Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend M ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. Index 95h Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON Count Register (F0 Index 95h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video speedups. Index 95h Suspend Modulation ON Count Register (R/W) Reset Value = 000 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	Index 94h	Suspend Modulation OFF Count Register (R/W)	Reset Value = 00h
speedups. Suspend Modulation ON Count Register (R/W) Reset Va 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulatinger (F0 Index 94h), perform the Suspend Modulation OFF	speedups. Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend M ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	speedups. Suspend Modulation ON Count Register (R/W) Reset Value = 00 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	speedups. Suspend Modulation ON Count Register (R/W) Reset Value = 001 7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	7:0	deasserted to the GX-series processor. This timer, together with the Suspend Modulation OI 95h), perform the Suspend Modulation function for CPU power management. The ratio of the	N Count Register (F0 Index e on-to-off count sets up an
7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Sus	7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend M ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	7:0 Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals that the SUSP# pin will be asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video			IRQ speedups and video
asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Sus	asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend M ulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock fre- quency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h), perform the Suspend Modulation function for CPU power management. The ratio of the on-to-off count sets up an effective (emulated) clock frequency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are IRQ speedups and video	Index 95h	Suspend Modulation ON Count Register (R/W)	Reset Value = 00h
quency, allowing the power manager to reduce CPU power consumption.				7:0	asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 9- ulation function for CPU power management. The ratio of the on-to-off count sets up an effect quency, allowing the power manager to reduce CPU power consumption.	4h), perform the Suspend Moo ctive (emulated) clock fre-
						IRQ speedups and video

Table 3-14. Suspend Modulation Related Registers (Continued)

Index 96h	Suspend Configuration Register (R/W)	Reset Value = 00h
7:5	Reserved: Set to 0.	
4	Power Savings: 0 = Enable; 1 = Disable.	
3	Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include	ed.
2	Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a G Suspend. 0 = Disable; 1 = Enable.	GX-series processor during
1	SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI	occurs.
	0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Susper occurs.	
	1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable Offset 08h).	e Register (F1BAR+Memor
	The purpose of this bit is to disable Suspend Modulation while the CPU is in the System Mana technology and power management operations occur at full speed. Two methods for accompliate SMI into the IRQ Speedup Timer Count Register (F0 Index 8Ch), or to have the SMI disable SMI handler reads the SMI Speedup Disable Register (F1BAR+Memory Offset 08h). The I The IRQ speedup method is provided for software compatibility with earlier revisions of the CS if the Suspend Modulation feature is disabled (bit $0 = 0$).	shing this are either to map le Suspend Modulation unti atter is the preferred metho
0	Suspend Modulation Feature: 0 = Disable; 1 = Enable.	
	When enabled, the SUSP# pin will be asserted and deasserted for the durations programmed OFF/ON Count Registers (F0 Index 94h/95h).	in the Suspend Modulation
F0 Index A	8h-A9h Video Overflow Count Register (R/W)	Reset Value = 0000
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 10 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count Regis ms timer re-triggers. Software clears the overflow register when new evaluations are to begin. register may be combined with other data to determine the type of video accesses present in the	ter increments and the 100 The count contained in this
F1BAR+M	emory Offset 08h-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Index 96h[1] = invokes the SMI handler to re-enable Suspend Modulation.	1), a read of this register
	The data read from this register can be ignored. If the Suspend Modulation feature is disabled,	reading this 1/O leastion he

3.4.1.7 Save-to-Disk/Save-to-RAM

This is a derivative of the Off state. The processor and the CS5530A have the capability to save their complete state. This state information can be saved to a hard disk or to RAM and the system can be turned off. When powered back on, the system can be returned exactly back to the state it was in when the save process began. This means that the system does not have to be rebooted in the traditional sense. In both cases, precautions must be taken in the system design to make sure that there is sufficient space on the hard drive or RAM to store the information. In the case of the RAM, it must also be powered at all times and can not be corrupted when the system is powered off and back on.

The PC/AT compatible floppy port is not part of the CS5530A. If a floppy is attached on the ISA bus in a SuperI/O or by some other means, some of the FDC registers are shadowed in the CS5530A because they cannot be safely read. The FDC registers are shown in Table 3-15. Additional shadow registers for other functions are described in:

- Table 3-40 "DMA Shadow Register" on page 96
- Table 3-42 "PIT Shadow Register" on page 98
- Table 3-45 "PIC Shadow Register" on page 100
- Table 3-53 "Real-Time Clock Registers" on page 107

Bit	Description	
0 Index E	4h Floppy Port 3F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F2h Shadow (Read Only): Last written value of I/O Port 3F2h. Required for support and Save-to-Disk/RAM coherency.	of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is no the register is being read. It is provided here to assist in a Save-to-Disk operation.	t deterministic of when
0 Index B	5h Floppy Port 3F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 3F7h Shadow (Read Only): Last written value of I/O Port 3F7h. Required for support and Save-to-Disk/RAM coherency.	of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is no the register is being read. It is provided here to assist in a Save-to-Disk operation.	t deterministic of when
0 Index B	6h Floppy Port 1F2h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F2h Shadow (Read Only): Last written value of I/O Port 1F2h. Required for support and Save-to-Disk/RAM coherency.	of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is no the register is being read. It is provided here to assist in a Save-to-Disk operation.	t deterministic of when
0 Index B	7h Floppy Port 1F7h Shadow Register (RO)	Reset Value = xxh
7:0	Floppy Port 1F7h Shadow (Read Only): Last written value of I/O Port 1F7h. Required for support and Save-to-Disk/RAM coherency.	of FDC power ON/OFF
	This register is a copy of an I/O register which cannot safely be directly read. Value in register is no the register is being read. It is provided here to assist in a Save-to-Disk operation.	t deterministic of when

Table 3-15. Power Management Shadow Registers

F0

F0

F0

F0

3.4.2 APM Support

Some IA systems rely solely on an APM (Advanced Power Management) driver for enabling the operating system to power-manage the CPU. APM provides several services which enhance the system power management and is theoretically the best approach; but in its current form, APM is imperfect for the following reasons:

- APM is an OS-specific driver, and may not be available for some operating systems.
- Application support is inconsistent. Some applications in foreground may prevent Idle calls.

• APM does not help with Suspend determination or peripheral power management.

The CS5530A provides two entry points for APM support:

- Software CPU Suspend control via the CPU Suspend Command Register (F0 Index AEh)
- Software SMI entry via the Software SMI Register (F0 Index D0h). This allows the APM BIOS to be part of the SMI handler.

These registers are shown in Table 3-16.

Bit	Description	
F0 Index	AEh CPU Suspend Command Register (WO)	Reset Value = 00h
7:0	Software CPU Suspend Command (Write Only): If bit 0 in the Clock Stop Control Register 0) and all SMI status bits are 0, a write to this register causes a SUSP#/SUSPA# handshake in a low-power state. The data written is irrelevant. Once in this state, any unmasked IRQ or dition.	with the CPU, placing the CPU SMI releases the CPU halt con-
	If F0 Index BCh[0] = 1, writing to this register invokes a full system Suspend. In this case, the the SUSP#/SUSPA# halt. Upon a Resume event (see Note), the PLL delay programmed in the allowing the clock chip and CPU PLL to stabilize before deasserting the SUSP# pin.	
	Note: If the clocks are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR+M only IRQ pins that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 ar source (F0 Index 92h[2:0]), they too can be used as a Resume event. No other CS55 up the system from Suspend when the clocks are stopped. As long as the 32 KHz clo events are also Resume events.	re enabled as an external SMI 530A pins can be used to wake-
F0 Index	D0h Software SMI Register (WO)	Reset Value = 00h
7:0	Software SMI (Write Only): A write to this location generates an SMI. The data written is in software entry into SMM via normal bus access instructions.	relevant. This register allows
ww.national	com 62	Revision

Table 3-16. APM Support Registers

3.4.3 Peripheral Power Management

The CS5530A provides peripheral power management using a combination of device idle timers, address traps, and general purpose I/O pins. Idle timers are used in conjunction with traps to support powering down peripheral devices. Eight programmable GPIO (general purpose I/O) pins are included for external device power control as well as other functions. All I/O addresses are decoded in 16 bits. All memory addresses are decoded in 32 bits.

3.4.3.1 Device Idle Timers and Traps

Idle timers are used to power manage a peripheral by determining when the peripheral has been inactive for a specified period of time, and removing power from the peripheral at the end of that time period.

Idle timers are provided for the commonly-used peripherals (FDC, IDE, parallel/serial ports, and mouse/keyboard). In addition, there are three user-defined timers that can be configured for either I/O or memory ranges. The Power Management enable bit (F0 Index 80h[1]) enables and disables the power management idle timers. The Trap bit in the same register (F0 Index 80h[2]) enables and disables device I/O traps.

The idle timers are 16-bit countdown timers with a 1 second time base, providing a time-out range of 1 to 65536 seconds (1092 minutes) (18 hours). General purpose timers can be programmed to count milliseconds instead of seconds (see Section 3.4.3.2 on page 73 for further information on general purpose timers). When the idle timers are enabled, the timers are loaded from the timer count registers and start to decrement at the next timebase clock, but cannot trigger an interrupt on that cycle. If an idle timer is initially set to 1, it decrements to 0 on the first cycle and continues counting with 65535 on the next cycle. Starting at 2 gives 1 on the first cycle, and 0 on the second cycle, generating the interrupt. Since the timebase is one second, the minimum interval before the next interrupt from this timer is variable, from one to two seconds with a setting of two.

The idle timers continue to decrement until one of two possibilities occurs: a bus cycle occurs at that I/O or memory range, or the timer decrements to zero.

When a bus cycle occurs, the idle timer is reloaded with its starting value. It then continues to decrement.

When the timer decrements to zero, if power management is enabled (F0 Index 80h[0] = 1), the timer generates an SMI. (F0 Index 80h[0] = 0 does not disable these timers from running, but only from generating SMI.)

When an idle timer generates an SMI, the SMI handler manages the peripheral power, disables the timer, and enables the trap. The next time an event occurs, the trap generates an SMI. This time, the SMI handler applies power to the peripheral, enables the timer (thus reloading its starting value), and disables the trap.

Tables 3-17 through 3-25 show the device associated idle timers and traps programming bits.

Bit	Description	
F0 Index	80h Power Management Enable Register 1 (R/W)	Reset Value = 00h
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable.	
	This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.	
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.	
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at the	ir current counts.
	This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the G Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# fe Index AEh).	
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.	
	This bit must be set (1) immediately after POST for some power management resources to function command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trigger F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register them from generating an SMI# interrupt. It also has no effect on the UDEF traps.	ger events listed for

Table 3-17. Power Management Global Enabling Bits

Table 3-18. Keyboard/Mouse Idle Timer and Trap Related Registers

Bit	Description	
F0 Index 8		Reset Value = 00h
3	Keyboard/Mouse Idle Timer Enable: Load timer from Keyboard/Mouse Idle Timer Count Re erate an SMI when the timer expires. 0 = Disable; 1 = Enable.	
	If an access occurs in the address ranges (listed below) the timer is reloaded with the progra Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)	mmed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].	
F0 Index 8		Reset Value = 00h
3	Keyboard/Mouse Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is gen Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[3].	erated.
F0 Index 9		Reset Value = 00h
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)	
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM	2. (Note)
mo The	nitor serial port access for power management purposes and added to the keyboard/mouse de use, along with the keyboard, is considered an input device and is used only to determine when ese bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (F0 Inde Serial Port Idle Timer Count Register (F0 Index 9Ch).	n to blank the screen.
F0 Index 9	Eh-9Fh Keyboard / Mouse Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Keyboard / Mouse Idle Timer Count: The idle timer loaded from this register determines we are not in use so that the LCD screen can be blanked. The 16-bit value programmed here rep for these ports after which the system is alerted via an SMI. The timer is automatically reload ever an access occurs to either the keyboard or mouse I/O address spaces, including the mowhen a mouse is enabled on a serial port. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[3] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	resents the period of inactivity led with the count value when

Geode[™] CS5530A

Functional Description (Continued)

Table 3-19. Parallel/Serial Idle Timer and Trap Related Registers

	Description	
F0 Index 8	Power Management Enable Register 2 (R/W)	Reset Value = 00h
2	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer erate an SMI when the timer expires. 0 = Disable; 1 = Enable.	r Count Register (F0 Index 9Ch) and gen-
	If an access occurs in the address ranges (listed below) the timer is reloaded with	the programmed count.
	LPT1: I/O Port 378h-37Fh, 778h-77Ah	
	LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)	
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)	
	COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status is reported at F0 Index 85h/F5h[2].	
F0 Index 8	32h Power Management Enable Register 3 (R/W)	Reset Value = 00h
2	Parallel/Serial Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs in the address ranges (listed below) ar LPT1: I/O Port 378h-37Fh, 778h-77Ah	n SMI is generated.
	LPT2: I/O Port 278h-27Fh, 678h-67Ah	
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded)	
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh	
	COM4: I/O Port 2E8h-2EFh	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[2].	
F0 Index 9	O3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (No	ote)
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM	1; 1 = COM2. (Note)
mon	s 1 and 0 - If a mouse is attached to a serial port (bit 1 = 1), that port is removed fro nitor serial port access for power management purposes and added to the keyboar use, along with the keyboard, is considered an input device and is used only to determine the termination of terminati	d/mouse decode. This is done because a
	ese bits determine the decode used for the Keyboard/Mouse Idle Timer Count Regiser and Port Idle Timer Count Register (F0 Index 9Ch).	ster (F0 Index 9Eh) as well as the Paral-
F0 Index 9	OCh-9Dh Parallel / Serial Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Parallel / Serial Idle Timer Count: The idle timer loaded from this register is used ports are not in use so that the ports can be power managed. The 16-bit value prinactivity for these ports after which the system is alerted via an SMI. The timer is value whenever an access occurs to the parallel (LPT) or serial (COM) I/O address serial port, that port is not considered here. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[2] = 1.	ogrammed here represents the period of automatically reloaded with the count ss spaces. If the mouse is enabled on a

Bit	Description		
F0 Index	31h	Power Management Enable Register 2 (R/W)	Reset Value = 00h
1		Enable: Load timer from Floppy Disk Idle Timer Count Register (I es. 0 = Disable; 1 = Enable.	F0 Index 9Ah) and generate an
	Primary floppy disk: I/O F	e address ranges (listed below) the timer is reloaded with the prog Port 3F2h, 3F4h, 3F5h, and 3F7 O Port 372h, 373h, 375h, and 377h	grammed count.
		ported at F1BAR+Memory Offset 00h/02h[0]. is reported at F0 Index 85h/F5h[1].	
F0 Index	32h	Power Management Enable Register 3 (R/W)	Reset Value = 00h
1	Floppy Disk Trap: 0 = D		
	Primary floppy disk: I/O F	an access occurs in the address ranges (listed below) an SMI is g Port 3F2h, 3F4h, 3F5h, or 3F7 O Port 372h, 373h, 375h, or 377h	enerated.
	Top level SMI status is re	ported at F1BAR+Memory Offset 00h/02h[0]. is reported at F0 Index 86h/F6h[1].	
F0 Index	93h	Miscellaneous Device Control Register (R/W)	Reset Value = 00h
7		 t: All system resources used to power manage the floppy drive us = Primary; 1 = Primary and Secondary. 	se the primary or secondary FDC
F0 Index	9Ah-9Bh	Floppy Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
	Floppy Disk Idle Timer	Count: The idle timer loaded from this register is used to determi	
15:0	not in use so that it can be inactivity after which the		with the count value whenever a

GeodeTM CS5530A

Geode[™] CS5530A

Functional Description (Continued)

Table 3-21. Primary Hard Disk Idle Timer and Trap Related Registers

-0 Index	81h Power Management Enable Register 2 (R/W)	Reset Value = 00h	
0	Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle Timer Count Register (F0 Index 98h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.		
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded v	with the programmed count.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].		
O Index	82h Power Management Enable Register 3 (R/W)	Reset Value = 00h	
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.		
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[5],	an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].		
0 Index		Reset Value = 00h	
5	Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are deco		
	accesses. 0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 Power management monitors only writes to I/O Port 1F0h and 1F7h		
0 Indox	1 = Power management monitors only writes to I/O Port 1F6h and 1F7h	Pasat Value – 0000h	
15:0	98h-99h Primary Hard Disk Idle Timer Count Register (R/W) Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to determine the idle timer loaded from the register is used to determine the idle timer loaded from the register is used to determine the idle timer loaded from the register is used to determine the idle timer loaded from the register is used to determine the registermine the register is used to determine the register is used to	Reset Value = 0000h	
13.0	disk is not in use so that it can be powered down. The 16-bit value programmed here represe disk inactivity after which the system is alerted via an SMI. The timer is automatically reloade ever an access occurs to the configured primary hard disk's data port (configured in F0 Index second timebase. To enable this timer set F0 Index 81h[0] = 1.	ents the period of primary har ad with the count value when-	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].		

Table 3-22. Secondary Hard Disk Idle Timer and Trap Related Registers

7 7 6	Bh Power Management Enable Register 4 (R/W) Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer and generate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].	
	and generate an SMI when the timer expires. 0 = Disable; 1 = Enable. If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
6		
	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4 Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].	l], an SMI is generated.
Index 93	3h Miscellaneous Device Control Register (R/W)	Reset Value = 00h
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are Disk accesses. 0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h	decoded as secondary hard
Index A	Ch-ADh Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
	hard disk is not in use so that it can be powered down. The 16-bit value programmed here r ary hard disk inactivity after which the system is alerted via an SMI. The timer is automatical whenever an access occurs to the configured secondary hard disk's data port (configured in uses a 1 second timebase. To enable this timer set F0 Index 83h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].	ly reloaded with the count valu

Table 3-23. User Defined Device 1 (UDEF1) Idle Timer and Trap Related Registers

F0 Index 8	Description		
	81h	Power Management Enable Register 4 (R/W)	Reset Value = 00h
4		ice 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Co /hen the timer expires. 0 = Disable; 1 = Enable.	ount Register (F0 Index A0h) and
		s in the programmed address range the timer is reloaded with the progra ogramming is at F0 Index C0h (base address register) and CCh (control	
		is is reported at F1BAR+Memory Offset 00h/02h[0].	
		status is reported at F0 Index 85h/F5h[4].	
F0 Index 8	-	Power Management Enable Register 3 (R/W)	Reset Value = 00h
4		ice 1 (UDEF1) Trap: 0 = Disable; 1 = Enable.	aratad UDEE1 address
	programming is at	d and an access occurs in the programmed address range an SMI is gen F0 Index C0h (base address register), and CCh (control register).	lerated. UDEF I address
		is is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[2].	
Index A0h		User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	configured as UDE period of inactivity count value whene ter) and F0 Index C To enable this time Top level SMI statu	ice 1 (UDEF1) Idle Timer Count: The idle timer loaded from this register F1 is not in use so that it can be power managed. The 16-bit value progra for this device after which the system is alerted via an SMI. The timer is ever an access occurs to memory or I/O address space configured at F0 CCh (control register). The timer uses a 1 second timebase. For set F0 Index 81h[4] = 1. Is is reported at F1BAR+Memory Offset 00h/02h[0]. Status is reported at F0 Index 85h/F5h[4].	rammed here represents the automatically reloaded with the
F0 Index (C0h-C3h	User Defined Device 1 Base Address Register (R/W)	Reset Value = 00000000h
31:0	timer resources) fo	ice 1 (UDEF1) Base Address [31:0]: This 32-bit register supports power or a PCMCIA slot or some other device in the system. The value written is ap/timer logic. The device can be memory or I/O mapped (configured in	s used as the address compara
F0 Index (CCh	User Defined Device 1 Control Register (R/W)	Reset Value = 00h
7	Memory or I/O Ma	apped: User Defined Device 1 is: 0 = I/O; 1 = Memory.	
6:0	Mask		
	If bit $7 = 0$ (I/O):		
	Rit 6	0 – Disable write cycle tracking	
	Bit 6	0 = Disable write cycle tracking 1 = Enable write cycle tracking	
	Bit 6 Bit 5	1 = Enable write cycle tracking0 = Disable read cycle tracking	
	Bit 5	 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking 	
	Bit 5 Bits 4:0	1 = Enable write cycle tracking0 = Disable read cycle tracking	
	Bit 5	 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking) and A[8:0] are ignored

Bit	Description		
F0 Index 8		Power Management Enable Register 4 (R/W)	Reset Value = 00h
5		vice 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer C when the timer expires. 0 = Disable; 1 = Enable.	Count Register (F0 Index A2h) and
	-	rs in the programmed address range the timer is reloaded with the programmed address range the timer is reloaded address range the timer is reloaded with the programmed address range the timer is reloaded addre	rammed count.
	UDEF2 address p	rogramming is at F0 Index C4h (base address register) and CDh (contr	
		us is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].	
F0 Index 8	32h	Power Management Enable Register 3 (R/W)	Reset Value = 00h
5	User Defined Dev	vice 2 (UDEF2) Trap: 0 = Disable; 1 = Enable.	
		d and an access occurs in the programmed address range an SMI is ge F0 Index C4h (base address register) and CDh (control register).	enerated. UDEF2 address
		us is reported at F1BAR+Memory Offset 00h/02h[9].	
		status is reported at F1BAR+Memory Offset 04h/06h[3].	
F0 Index	A2h-A3h	User Defined Device 2 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	configured as UDB period of inactivity count value whene ter) and F0 Index	vice 2 (UDEF2) Idle Timer Count: The idle timer loaded from this regis EF2 is not in use so that it can be power managed. The 16-bit value pro for this device after which the system is alerted via an SMI. The timer i ever an access occurs to memory or I/O address space configured at F0 CDh (control register). The timer uses a 1 second timebase.	grammed here represents the is automatically reloaded with the
	To enable this time	er set F0 Index 81h[5] = 1.	
	Tan Javal CMI atat	is reported at F1DAD; Mamony, Offact 00h/02h[0]	
		us is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 85h/F5h[5].	
F0 Index (Second level SMI		Reset Value = 00000000h
F0 Index (31:0	Second level SMI C4h-C7h User Defined Dev timer resources) for	status is reported at F0 Index 85h/F5h[5].	wer management (trap and idle i is used as the address compara-
	Second level SMI C4h-C7h User Defined Dev timer resources) for tor for the device t	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written	wer management (trap and idle h is used as the address compara-
31:0	Second level SMI C4h-C7h User Defined Dev timer resources) for tor for the device t	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i	wer management (trap and idle n is used as the address compara- in F0 Index CDh).
31:0	Second level SMI C4h-C7h User Defined Dev timer resources) for tor for the device t CDh Memory or I/O Ma Mask	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W)	wer management (trap and idle n is used as the address compara- in F0 Index CDh).
31:0 F0 Index (7	Second level SMI User Defined Dev timer resources) fo tor for the device t CDh Memory or I/O Ma Mask If bit 7 = 0 (I/O):	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W) apped: User Defined Device 2 is: 0 = I/O; 1 = Memory.	wer management (trap and idle n is used as the address compara- n F0 Index CDh).
31:0 F0 Index (7	Second level SMI C4h-C7h User Defined Dev timer resources) for tor for the device t CDh Memory or I/O Ma Mask	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W)	wer management (trap and idle n is used as the address compara- n F0 Index CDh).
31:0 F0 Index (7	Second level SMI User Defined Dev timer resources) fo tor for the device t CDh Memory or I/O Ma Mask If bit 7 = 0 (I/O):	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W) apped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking	wer management (trap and idle n is used as the address compara- n F0 Index CDh).
31:0 F0 Index (7	Second level SMI C4h-C7h User Defined Dev timer resources) fo tor for the device t CDh Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6 Bit 5	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W) apped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking	wer management (trap and idle n is used as the address compara- in F0 Index CDh).
31:0 F0 Index (7	Second level SMI C4h-C7h User Defined Dev timer resources) fo tor for the device t CDh Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6 Bit 5 Bit 5 Bits 4:0	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W) apped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking Mask for address bits A[4:0]	wer management (trap and idle n is used as the address compara- n F0 Index CDh).
31:0 F0 Index (7	Second level SMI C4h-C7h User Defined Dev timer resources) fo tor for the device t CDh Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6 Bit 5	status is reported at F0 Index 85h/F5h[5]. User Defined Device 2 Base Address Register (R/W) vice 2 (UDEF2) Base Address [31:0]: This 32-bit register supports pow or a PCMCIA slot or some other device in the system. The value written rap/timer logic. The device can be memory or I/O mapped (configured i User Defined Device 2 Control Register (R/W) apped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking Mask for address bits A[4:0]	wer management (trap and idle n is used as the address compara- in F0 Index CDh). Reset Value = 00h

Table 3-25. User Defined Device 3 (UDEF3) Idle Timer and Trap Related Registers

	Description				
F0 Index	-	Power Management Enable Register 4 (R/W)	Reset Value = 00h		
6	User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register (F0 Index A4h) and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.				
		s in the programmed address range the timer is reloaded with the progra ogramming is at F0 Index C8h (base address register) and CEh (control			
		is is reported at F1BAR+Memory Offset 00h/02h[0].			
	Second level SMI s	status is reported at F0 Index 85h/F5h[6].			
F0 Index	82h	Power Management Enable Register 3 (R/W)	Reset Value = 00h		
6		ice 3 (UDEF3) Trap: 0 = Disable; 1 = Enable.			
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).				
		is is reported at F1BAR+Memory Offset 00h/02h[9]. status is reported at F1BAR+Memory Offset 04h/06h[4].			
F0 Index	•	User Defined Device 3 Idle Timer Count Register (R/W)	Reset Value = 0000h		
15:0	configured as UDE period of inactivity count value whene ter) and F0 Index C To enable this time Top level SMI statu	tice 3 (UDEF3) Idle Timer Count: The idle timer loaded from this register F3 is not in use so that it can be power managed. The 16-bit value progra for this device after which the system is alerted via an SMI. The timer is ever an access occurs to memory or I/O address space configured at F0 CEh (control register). The timer uses a 1 second timebase. For set F0 Index 81h[6] = 1. Is is reported at F1BAR+Memory Offset 00h/02h[0]. Status is reported at F0 Index 85h/F5h[6].	rammed here represents the automatically reloaded with the		
F0 Index	C8h-CBh	User Defined Device 3 Base Address Register (R/W)	Reset Value = 00000000h		
31:0	timer resources) fo	ice 3 (UDEF3) Base Address [31:0]: This 32-bit register supports power or a PCMCIA slot or some other device in the system. The value written is rap/timer logic. The device can be memory or I/O mapped (configured in	s used as the address compara		
F0 Index	CEh	User Defined Device 3 Control Register (R/W)	Reset Value = 00h		
F0 Index	1	User Defined Device 3 Control Register (R/W) apped: User Defined Device 3 is: 0 = I/O; 1 = Memory.	Reset Value = 00h		
	Memory or I/O Ma Mask		Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O):	apped: User Defined Device 3 is: 0 = I/O; 1 = Memory.	Reset Value = 00h		
7	Memory or I/O Ma Mask	0 = Disable write cycle tracking	Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6	 0 = Disable write cycle tracking 1 = Enable write cycle tracking 	Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O):	0 = Disable write cycle tracking	Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6	0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking	Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6 Bit 5	 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 	Reset Value = 00h		
7	Memory or I/O Ma Mask If bit 7 = 0 (I/O): Bit 6 Bit 5 Bits 4:0 If bit 7 = 1 (M/IO): Bits 6:0	 0 = Disable write cycle tracking 1 = Enable write cycle tracking 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 			

Although not considered as device idle timers, two additional timers are provided by the CS5530A. The Video Idle Timer used for Suspend determination and the VGA Timer used for SoftVGA. These timers and their associated programming bits are listed in Tables 3-26 and 3-27.

Table 3-26. Video Idle Timer and Trap Related Registers

Bit	Description		
F0 Index 8	1h Power	Management Enable Register 2 (R/W)	Reset Value = 00h
7	Video Access Idle Timer Enable: Lo when the timer expires. 0 = Disable; 1	ad timer from Video Idle Timer Count Register (F0 = Enable.	Index A6h) and generate an SMI
	If an access occurs in the video addre reloaded with the programmed count.	ss range (sets bit 0 of the GX-series processor's P	SERIAL register) the timer is
	Top level SMI status is reported at F1E Second level SMI status is reported at	,	
F0 Index 8	2h Power	Management Enable Register 3 (R/W)	Reset Value = 00h
7	Video Access Trap: 0 = Disable; 1 = If this bit is enabled and an access occ register) an SMI is generated. Top level SMI status is reported at F1E Second level SMI status is reported at	curs in the video address range (sets bit 0 of the G BAR+Memory Offset 00h/02h[0].	X-series processor's PSERIAL
F0 Index /	\6h-A7h Vide	eo Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	part of the Suspend determination alg	er loaded from this register determines when the gra orithm. The 16-bit value programmed here represe n SMI. The count in this timer is automatically reset ses a 1 second timebase.	ents the period of video inactivity
	to the CS5530A via the serial connecti	m the graphics controller is embedded in the CPU, on (PSERIAL register, bit 0) from the processor. Th 3Cxh, 3Dxh and A000h-B7FFh) in the event an ext	ne CS5530A also detects accesses
	To enable this timer set F0 Index 81h[7	7] = 1.	
	Top level SMI status is reported at F1E Second level SMI status is reported at	,	

Table 3-27. VGA Timer Related Registers

Bit	Description	
F0 Index 8	3h Power Management Enable Register 4 (R/W)	Reset Value = 00h
3	 VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disab VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6]. To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7] before enabling power management. SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only). Although grouped with the power management Idle Timers, the VGA Timer is not a power management is enabled or disabled. 	7:0], and reenable it
F0 Index 8	Bh General Purpose Timer 2 Control Register (R/W)	Reset Value = 00h
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). $0 = 1 \text{ ms}$; $1 = 32 \mu\text{s}$.	
F0 Index 8	Eh VGA Timer Count Register	
7:0	VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded in timer is enabled (F0 Index $83h[3] = 1$). The timer is decremented with each clock of the configured ta $8Bh[6]$). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+Mei (only). Once expired, this timer must be re-initialized by disabling it (F0 Index $83h[3] = 0$) and then each $83h[3] = 1$). When the count value is changed in this register, the timer must be re-initialized in order loaded.	imebase (F0 Index mory Offset 00h/02h[6] enabling it (F0 Index
	This timer's timebase is selectable as 1 ms (default) or 32 µs. (F0 Index 8Bh).	
	Note: Although grouped with the power management Idle Timers, the VGA Timer is not a power manot affected by the Global Power Management Enable setting at F0 Index 80h[0].	nagement function. It is

3.4.3.2 General Purpose Timers

The CS5530A contains two general purpose timers, General Purpose Timer 1 (F0 Index 88h) and General Purpose Timer 2 (F0 Index 8Ah). These two timers are similar to the Device Idle Timers in that they count down to zero unless re-triggered, and generate an SMI when they reach zero. However, these are 8-bit timers instead of 16 bits, they have a programmable timebase, they are not enabled or disabled by Global Power Management bits F0 Index 80h[1:0], and the events which reload these timers are configurable. These timers are typically used for an indication of system inactivity for Suspend determination.

General Purpose Timer 1 can be re-triggered by activity to any of the configured user defined devices, keyboard and mouse, parallel and serial, floppy disk, or hard disk.

General Purpose Timer 2 can be re-triggered by a transition on the GPIO7 pin (if GPIO7 is properly configured). Configuration of the GPIO7 is explained in Section 3.4.3.4 "General Purpose I/O Pins" on page 76. The timebase for both general purpose timers can be configured as either 1 second (default) or 1 millisecond. The registers at F0 Index 89h and 8Bh are the control registers for the general purpose timers. Table 3-28 show the bit formats for these registers.

After a general purpose timer is enabled or after an event reloads the timer, the timer is loaded with the configured count value. Upon expiration of the timer an SMI is generated and a status flag is set. Once expired, this timer must be re-initialized by disabling and enabling it.

The general purpose timer is not loaded immediately, but when the free-running timebase counter reaches its maximum value. Depending on the count at the time, this could be on the next 32 KHz clock (CLK_32K), or after a full count of 32, or 32,768 clocks (approximately 1 msec, or exactly 1 sec). The general purpose timer cannot trigger an interrupt until after the first count. Thus, the minimum time before the next SMI from the timer can be either from 1-2 msec or 1-2 sec with a setting of 02h.

Bit	Description	
0 Index	88h General Purpose Timer 1 Count Register (R/W)	Reset Value = 00h
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This va bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is e Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer.	
	The timer is decremented with each clock of the configured timebase. Upon expiration of the the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SF1BAR+Memory Offset 04h/06h[0]).	, 0
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a	new count value here.
	This timer's timebase can be configured as 1 msec or 1 sec at F0 Index 89h[7].	
0 Index	B9h General Purpose Timer 1 Control Register (R/W)	Reset Value = 00ł
7	Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h).	0 = 1 sec; 1 = 1 msec.
6	Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Dis	sable; 1 = Enable.
	Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1	. UDEF3 address
	programming is at F0 Index C8h (base address register) and CEh (control register).	
5	Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Dis	sable; 1 = Enable.
	Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1	. UDEF2 address
	programming is at F0 Index C4h (base address register) and CDh (control register).	
4	Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Dis	sable; 1 = Enable.
	Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1	. UDEF1 address
	programming is at F0 Index C0h (base address register) and CCh (control register)	
3	Re-trigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Er	nable
	Any access to the keyboard or mouse I/O address range (listed below) reloads GP Timer 1.	
	Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included)	
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)	
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Ena	able.
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Time LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah	
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)	
	COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh	

Table 3-28. General Purpose Timers and Control Registers

Bit	Description	
1	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1.	
	Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7	
	Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h	
	The active floppy drive is configured via F0 Index 93h[7].	
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Timer 1.	
F0 Index	8Ah General Purpose Timer 2 Count Register (R/W) Reset Value = 00h	
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can represent either an 8- bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled (F0 Index 83h[1] = 1) Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.	
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, an SMI is generated and the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reported in F1BAR+Memory Offset 04h/06h[1]).	
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new count value here.	
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be configured as an input (F0 Index 90h[7]).	
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].	
F0 Index	8Bh General Purpose Timer 2 Control Register (R/W) Reset Value = 00h	
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads GP Timer 1.	
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 µs.	
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit.	
	As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah).	
	As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 2.	
4	General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16-bit.	
	As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h).	
	As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lower eight bits become zero, and this 16-bit value is used as the count for GP Timer 1.	
3	Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1 sec; 1 = 1 msec.	
2	Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GPIO7 pin reloads GP Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable.	
	I F() Index 92h171 selects whether a rising- or a falling-edge transition acts as a reload. For (2010)7 to work here, it must first b	
1:0	F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to work here, it must first b configured as an input (F0 Index 90h[7] = 0). Reserved: Set to 0.	

3.4.3.3 ACPI Timer Register

The ACPI Timer Count Register (F1BAR+Memory Offset 1Ch or a fixed I/O Port at 121Ch) provides the current value of the ACPI timer. The timer counts at 14.31818/4 MHz (3.579545 MHz). If SMI generation is enabled (F0 Index 83h[5] = 1), an SMI is generated when bit 23 toggles. Table 3-29 shows the ACPI Timer Count Register and the ACPI Timer SMI enable bit.

V-ACPI I/O Register Space

The register space designated as V-ACPI (Virtualized ACPI) I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space. In order for ACPI to be supported, the V-ACPI module must be included in the BIOS. The register descriptions that follow are supplied here for reference only.

Fixed Feature space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the V-ACPI solution are mapped to normal I/O space starting at Offset AC00h. However, the designer can relocate this register space at compile time, hereafter referred to as ACPI_BASE. Registers within the V-ACPI I/O space must only be accessed on their defined boundaries. For example, BYTE aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

Table 3-29 summarizes the registers available in the V-ACPI I/O Register Space. The "Reference" column gives the table and page number where the bit formats for the registers are located.

Table 3-29. ACPI Timer Related Registers/Bits

Bit	Description		
F1BAR+M	emory Offset 1Ch-1Fh (Note)	ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh
_	MHz). If SMI generation is enabled	egister provides the current value of the ACPI time via F0 Index 83h[5], an SMI is generated when th	
	MI status is reported at F1BAR+M rel SMI status is reported at F0 Inde		
31:24	Reserved: Always returns 0.		
23:0	Counter		
Note: The	ACPI Timer Count Register is also	accessible through I/O Port 121Ch.	
F0 Index 8	3h Po	wer Management Enable Register 4 (R/W)	Reset Value = 00h
5	ACPI Timer SMI: Allow SMI gene 121Ch). 0 = Disable; 1 = Enable.	eration for MSB toggles on the ACPI Timer (F1BAF	R+Memory Offset 1Ch or I/O Port
	Top level SMI status is reported a Second level SMI status is report	t F1BAR+Memory Offset 00h/02h[0]. ed at F0 Index 87h/F7h[0].	

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 4-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 229
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 229
05h		1	1	Reserved	00h	Page 229
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 229
07h		1	1	Reserved	00h	Page 229
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 230
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 230
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 230
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 230
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 231
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 231
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 232
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 232

Table 3-30. V-ACPI I/O Register Space Summary

3.4.3.4 General Purpose I/O Pins

The CS5530A provides up to eight GPIO (general purpose I/O) pins. Five of the pins (GPIO[7:4] and GPIO1) have alternate functions. Table 3-31 shows the bits used for GPIO pin function selection.

Each GPIO pin can be configured as an input or output. GPIO[7:0] can be independently configured to act as edgesensitive SMI events. Each pin can be enabled and configured to be either positive-edge sensitive or negative-edge sensitive. These pins then cause an SMI to be generated when an appropriate edge condition is detected. The power management status registers indicate that a GPIO external SMI event has occurred.

The GPIO Pin Direction Register 1 (F0 Index 90h) selects whether the GPIO pin is an input or output. The GPIO Pin

Data Register 1 (F0 Index 91h) contains the direct values of the GPIO pins. Write operations are valid only for bits defined as outputs. Reads from this register read the last written value if the pin is an output.

GPIO Control Register 1 (F0 Index 92h) configures the operation of the GPIO pins for their various alternate functions. Bits [5:3] set the edge sensitivity for generating an SMI on the GPIO[2:0] (input) pins respectively. Bits [2:0] enable the generation of an SMI. Bit 6 enables GPIO6 to act as the lid switch input. Bit 7 determines which edge transition will cause General Purpose Timer 2 (F0 Index 8Ah) to reload.

Table 3-32 shows the bit formats for the GPIO pin configuration and control registers.

Bit	Description		
F0 Index 4	43h	USB Shadow Register (R/W)	Reset Value = 03h
6	Enable SA20: Pin AD22 confi	guration: 0 = GPIO4; 1 = SA20. If F0 Index 43h bit 6 d	or bit 2 is set to 1, then pin AD22 = SA20.
2	Enable SA[23:20]: Pins AF23 bit 2 is set to 1, then pin AD22	, AE23, AC21, and AD22 configuration: 0 = GPIO[7:4 = SA20.	4]; 1 = SA[23:20]. If F0 Index 43h bit 6 or
F3BAR+M	lemory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h
21	Enable SDATA_IN2: Pin AE24	functions as: 0 = GPIO1; 1 = SDATA_IN2.	
	For this pin to function as SDA	TA_IN2, it must first be configured as an input (F0 In-	dex 90h[1] = 0).

Table 3-31. GPIO Pin Function Selection

Table 3-32. GPIO Pin Configuration/Control Registers

Bit	Description	Deset Malas - 001	
O Index	90h GPIO Pin Direction Register 1 (R/W)	Reset Value = 0	
7	GPI07 Direction: Selects if GPI07 is an input or output: 0 = Input; 1 = Output.		
6	GPIO6 Direction: Selects if GPIO6 is an input or output: 0 = Input; 1 = Output.		
5	GPIO5 Direction: Selects if GPIO5 is an input or output: 0 = Input; 1 = Output.		
4	GPIO4 Direction: Selects if GPIO4 is an input or output: 0 = Input; 1 = Output.		
3	GPIO3 Direction: Selects if GPIO3 is an input or output: 0 = Input; 1 = Output.		
2	GPIO2 Direction: Selects if GPIO2 is an input or output: 0 = Input; 1 = Output.		
1	GPIO1 Direction: Selects if GPIO1 is an input or output: 0 = Input; 1 = Output.		
0	GPIO0 Direction: Selects if GPIO0 is an input or output: 0 = Input; 1 = Output.		
Note: Se	everal of these pins have specific alternate functions. The direction configured here must be con- ernate function.	sistent with the pins' use as th	
Note: Se alte	everal of these pins have specific alternate functions. The direction configured here must be con- ernate function.		
Note: Se alte	everal of these pins have specific alternate functions. The direction configured here must be con- ernate function.	sistent with the pins' use as th Reset Value = 001	
Note: Se alte F0 Index	everal of these pins have specific alternate functions. The direction configured here must be con- ernate function. 91h GPIO Pin Data Register 1 (R/W)		
Note: Se alte F0 Index 7	everal of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High.		
Note: Se alt F0 Index 7 6	Several of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High. GPIO6 Data: Reflects the level of GPIO6: 0 = Low; 1 = High.		
Note: Se alt F0 Index 7 6 5	weral of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High. GPIO6 Data: Reflects the level of GPIO6: 0 = Low; 1 = High. GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High.		
Note: Se alt F0 Index 7 6 5 4	weral of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High. GPIO6 Data: Reflects the level of GPIO6: 0 = Low; 1 = High. GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High. GPIO4 Data: Reflects the level of GPIO4: 0 = Low; 1 = High.		
Note: Se altr F0 Index 7 6 5 4 3	weral of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High. GPIO5 Data: Reflects the level of GPIO6: 0 = Low; 1 = High. GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High. GPIO4 Data: Reflects the level of GPIO4: 0 = Low; 1 = High. GPIO3 Data: Reflects the level of GPIO3: 0 = Low; 1 = High.		
Note: Se alt F0 Index 7 6 5 4 3 2	weral of these pins have specific alternate functions. The direction configured here must be conternate function. 91h GPIO Pin Data Register 1 (R/W) GPIO7 Data: Reflects the level of GPIO7: 0 = Low; 1 = High. GPIO6 Data: Reflects the level of GPIO6: 0 = Low; 1 = High. GPIO5 Data: Reflects the level of GPIO5: 0 = Low; 1 = High. GPIO4 Data: Reflects the level of GPIO4: 0 = Low; 1 = High. GPIO3 Data: Reflects the level of GPIO3: 0 = Low; 1 = High. GPIO2 Data: Reflects the level of GPIO2: 0 = Low; 1 = High.		

Geode[™] CS5530A

Functional Description (Continued)

Table 3-32. GPIO Pin Configuration/Control Registers (Continued)

GP Timer 2 to reload. 0 = Rising: 1 = Falling (Note 2). 6 GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = Lid switch. When enabled, every transition of the GPIO6 pin causes the lid switch status to togle and generate an SMI. The top level SMI status is reported at FIBAR-Memory Offset 00h/02h[0]. Second level SMI status is reported at FIBAR-Memory Offset 00h/02h[0]. Second level SMI status is reported at FIBAR-Memory Offset 00h/02h[0]. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO 2 as n External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI or rising or faling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR-Memory Offset 00h/02h[0]. 3 Generate an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI or rising or faling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO 0 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an S	0 Index	92h GPIO Control Register 1 (R/W) Reset Value = 00h
 When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI. The top level SMI status is reported at F 1BAR+Memory Offset 00h/02h(0). Second level SMI status is reported at F 0 Index 87h/F7h[3]. If GPIOE is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Bit 7 must be set to enable this bit. GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR+Memory Offset 00h/02h(0). Second level SMI status reporting is at F0 Index 87h/F7h[3]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI or rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[6]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI or rising- or falling-edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status is r	7	GPI07 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GPI07 causes GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2).
The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3], If GPIOE is enabled as the lid switch, F0 Index 87h/F7h[3] reports the current status of the lid's position. GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. Image Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 3). 0 = Disa	6	
Second level SMI status is reported at F0 Index 87h/F7h[3]. If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. 5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 3 GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO1 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI or rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO1 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status repor		When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and generate an SMI.
If GPIOE is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's position. GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR-Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising- or falling-edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR-Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR-Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO to be an external SMI source and generate an SMI of rising or falling edge transition (of pendex 97h/F7h[5]. 0 Enable GPIO3 as an External SMI Source; Allow GPIO2 ho be an external SMI source and generate an SMI of the SPIO2 can generate an SMI (fo Index 97h/f3) ro re-trigge		
5 GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 4 GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR-Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO2 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR-Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO2 as an External SMI source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition in properly, the respective GPIO pin must be configured as an input (F0 Index 2). Top level SMI status reporting is at F0 Index 87h/F7h[5].		
Bit 2 must be set to enable this bit. 4 GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00N/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO1 as an external SMI source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. 0 rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5].		
4 GPI01 Edge Sense for SMI: Selects which edge transition of the GPI01 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 GPI00 Edge Sense for SMI: Selects which edge transition of the GPI00 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPI02 as an External SMI Source: Allow GPI02 to be an external SMI source and generate an SMI of rising or falling-edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. 1 Enable GPI01 as an External SMI Source: Allow GPI01 to be an external SMI source and generate an SMI of rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. 2 Enable GPI00 as an External SMI Source: Allow GPI00 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. 3 GPI07 can generate an SMI (F0 Index 87h/F7h[5]. 0 Enable GPI00 as an External SMI sources, they are the only GPIO pin must be configured as an input (F0 Index 2) GPI07 can generate an SMI (F0 Index 87h/F7h[5]. 0 Index 97h GPI0 Control Register 2 (R/W) 7 GPI07 Edge Sense for SMI: Selects which edge transition of the GPI07 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be	5	
Bit 1 must be set to enable this bit. 3 GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI (of plevel SMI status reporting is at F0 Index 87h/F7h[5]. 0 the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 52) (GPIO7 can generate an SMI (F0 Index 57) (F7h[5]. 0 Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 7 <td></td> <td></td>		
3 GPI00 Edge Sense for SMI: Selects which edge transition of the GPI00 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 2 Enable GPI02 as an External SMI Source: Allow GPI02 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPI01 as an External SMI Source: Allow GPI01 to be an external SMI source and generate an SMI or rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F1 bAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPI00 as an External SMI Source: Allow GPI00 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPI00 as an External SMI Source: Allow GPI00 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting at F0 Index 87h/F7h[5]. 0 these SMI tatus is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reporting is at F0 Index 87h/F7h[5]. </td <td>4</td> <td></td>	4	
Bit 1 must be set to enable this bit. 2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO2 are enabled as external SMI sources, they are the only GPIOs pin must be configured as an input (F0 Index 92) (SPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3<		
2 Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising - or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO3 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 Enable GPIO3 as an External SMI Sources: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. 0 these 37h GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. 3) If GPIO7_Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be	3	
 rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reporting is at F0 Index 87h/F7h[5]. Enable GPIO0 as an External SMI FORDER STRETHER STR		
Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI of rising- or failing-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or failing edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. 0 Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 7 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to e	2	ů – Li – L
Second level SMI status reporting is at F0 Index 87h/F7h[7]. 1 Enable GPI01 as an External SMI Source: Allow GPI01 to be an external SMI source and generate an SMI or rising - or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPI00 as an External SMI Source: Allow GPI00 to be an external SMI source and generate an SMI or rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPI0 pin must be configured as an input (F0 Index 97h (5) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPI0[2:0] are enabled as external SMI sources, they are the only GPI0s that can be used as SMI sources to w system from Suspend when the clocks are stopped. 0 Index 97h GPI0 Control Register 2 (R/W) 7 GPI07 Edge Sense for SMI: Selects which edge transition of the GPI05 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPI03 Edge Sense for SMI: Selects which edge transition of the GPI04 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 5 GPI04 Edge Sense for SMI: Selects which edge transition of the GPI03 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 6 GP		
1 Enable GPI01 as an External SMI Source: Allow GPI01 to be an external SMI source and generate an SMI of rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reporting is at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPI00 as an External SMI Source: Allow GPI00 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPI0 pin must be configured as an input (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPI0[2:0] are enabled as external SMI sources, they are the only GPI0s that can be used as SMI sources to w system from Suspend when the clocks are stopped. 0 GPI07 Edge Sense for SMI: Selects which edge transition of the GPI07 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPI03 Edge Sense for SMI: Selects which edge transition of the GPI04 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 7 GPI04 Edge Sense for SMI: Selects which edge transition of the GPI04 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 6 GPI03 Edge Sense for SMI: Selects which edge transition of the GPI04 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPI07		
 rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 92) GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. O Index 97h GPIO Control Register 2 (R/W) Reset V GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memor	1	Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and generate an SMI on either a
Second level SMI status reporting is at F0 Index 87h/F7h[6]. 0 Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 92) GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. 3 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to gener		•
0 Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and generate an SMI of rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F18AR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 92h[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. 0 Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 6 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 7 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 8 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an extern		
rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 88h[2]) or both. 3) If GPI0[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. 0 Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 3 a GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 a		Second level SMI status reporting is at F0 Index 87h/F7h[6].
Second level SMI status reporting is at F0 Index 87h/F7h[5]. otes: 1) For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 92) GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to w system from Suspend when the clocks are stopped. D Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 6 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 p	0	
2) GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 88h[2]) or both. 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to waystem from Suspend when the clocks are stopped. 0 Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. 70 Index 9HOF S as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. 70 Index 9HOF S as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. 70 Index 9HOF S		
 3) If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to we system from Suspend when the clocks are stopped. D Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[2]. 	otes: 1)	For any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).
system from Suspend when the clocks are stopped. O Index 97h GPIO Control Register 2 (R/W) Reset V 7 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 7 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 8 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 8 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. 7 Top level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. 7 Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. 8 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SMI rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable.	2)	GPIO7 can generate an SMI (F0 Index 97h[3]) or re-trigger General Purpose Timer 2 (F0 Index 8Bh[2]) or both.
 GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Bit 3 must be set to enable this bit. GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[3]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[2]. 		If GPIO[2:0] are enabled as external SMI sources, they are the only GPIOs that can be used as SMI sources to wake-up the system from Suspend when the clocks are stopped.
Bit 3 must be set to enable this bit. 6 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM	0 Index	97h GPIO Control Register 2 (R/W) Reset Value = 001
 GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Bit 2 must be set to enable this bit. GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI 	7	GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an SMI. 0 = Rising; 1 = Falling.
Bit 2 must be set to enable this bit. 5 GPI04 Edge Sense for SMI: Selects which edge transition of the GPI04 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPI03 Edge Sense for SMI: Selects which edge transition of the GPI03 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPI07 as an External SMI Source: Allow GPI07 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPI05 as an External SMI Source: Allow GPI05 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPI05 as an External SMI Source: Allow GPI05 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPI04 as an External SMI Source: Allow GPI04 to be an external SMI source and to generate an SM		Bit 3 must be set to enable this bit.
 5 GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Bit 1 must be set to enable this bit. 4 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM 	6	GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an SMI. 0 = Rising; 1 = Falling.
Bit 1 must be set to enable this bit. 4 GPI03 Edge Sense for SMI: Selects which edge transition of the GPI03 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. 3 Enable GPI07 as an External SMI Source: Allow GPI07 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPI05 as an External SMI Source: Allow GPI05 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPI04 as an External SMI Source: Allow GPI04 to be an external SMI source and to generate an SM		Bit 2 must be set to enable this bit.
 GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Bit 0 must be set to enable this bit. Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM 	5	GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an SMI. 0 = Rising; 1 = Falling.
Bit 0 must be set to enable this bit. 3 Enable GPI07 as an External SMI Source: Allow GPI07 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPI05 as an External SMI Source: Allow GPI05 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPI04 as an External SMI Source: Allow GPI04 to be an external SMI source and to generate an SM		Bit 1 must be set to enable this bit.
 3 Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM 	4	GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an SMI. 0 = Rising; 1 = Falling.
 rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3]. Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI 		Bit 0 must be set to enable this bit.
Second level SMI status reporting is at F0 Index 84h/F4h[3]. 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM	3	Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and to generate an SMI on either rising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable.
 2 Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and to generate an SM rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SM 		
 rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI 		
Second level SMI status reporting is at F0 Index 84h/F4h[2]. 1 Enable GPI04 as an External SMI Source: Allow GPI04 to be an external SMI source and to generate an SM	2	
•		
		Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and to generate an SMI on either
rising- or falling-edge transition (depends upon setting of bit 5). $0 = \text{Disable}; 1 = \text{Enable}.$	1	i nsing- or raining-edge transition (depends upon setting of bit 5). U = Disable; 1 = Enable.
Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[1].	1	Ten level CML status is reported at E4DAD (Memory Officet COE/2016)

	Table 5-52. GFTO FTT Comparation/Control Registers (Continued)
Bit	Description
0	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and to generate an SMI on either a rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[0].
Note Fra	
Note: For	any of the above bits to function properly, the respective GPIO pin must be configured as an input (F0 Index 90h).

Table 3-32. GPIO Pin Configuration/Control Registers (Continued)

3.4.3.5 Power Management SMI Status Reporting Registers

The CS5530A updates status registers to reflect the SMI sources. Power management SMI sources are the device idle timers, address traps, and general purpose I/O pins.

Power management events are reported to the processor through the SMI# pin. It is active low. When an SMI is initiated, the SMI# pin is asserted low and is held low until all SMI sources are cleared. At that time, SMI# is deasserted.

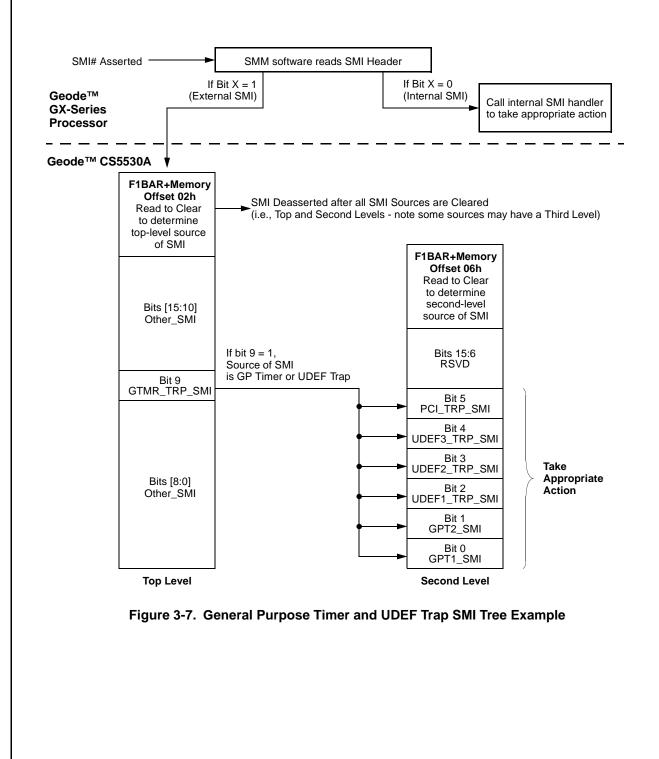

All SMI sources report to the Top Level SMI Status Register (F1BAR+Memory Offset 02h) and the Top Level SMI Status Mirror Register (F1BAR+Memory Offset 00h). The Top SMI Status and Status Mirror Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status. Since all SMI sources report to the Top Level SMI Status Register, many of its bits combine a large number of events requiring a second level of SMI status reporting. The second level of SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same, the difference between the two being that the SMI can not be cleared by reading the mirror register.

Figure 3-7 shows an example SMI tree for checking and clearing the source of general purpose timer and the user defined trap generated SMIs.

Table 3-33 on page 80 shows the bit formats of the read to clear Top Level SMI Status Register (F1BAR+Memory Offset 02h). Table 3-34 starting on page 81 shows the bit formats of the read to clear second level SMI status registers. For information regarding the location of the corresponding

mirror register, refer to the note in the footer of the register description.

Keep in mind, all SMI sources in the CS5530A are reported into the Top Level SMI Status Registers (F1BAR+Memory Offset 00h/02h); however, this discussion is regarding power management SMIs. For details regarding audio SMI events/reporting, refer to Section 3.7.2.2 "Audio SMI Related Registers" on page 123.

	Description	
F1BAR+N	lemory Offset 02h-03h Top Level SMI Status Register (RC)	Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode Conf 96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR be cleared on exit.	o
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No; 1 = Yes. SMI generation is configured in F0 Index 42h[7:6].	
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset com 0 = No; 1 = Yes.	nmand?
12	SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.	
11:10	Reserved (Read to Clear): Always reads 0.	
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (F caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 of Space? 0 = No; 1 = Yes.	,
	The next level of status is found at F1BAR+Memory Offset 04h/06h.	
8	SMI Source is Software Generated (Read to Clear): SMI was caused by software? 0 = No; 1	= Yes.
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to either Port 092h of which initiates an A20M# SMI? 0 = No; 1 = Yes.	or the keyboard command
	This method of controlling the internal A20M# in the GX-series processor is used instead of a pi	in.
	SMI generation enabling is at F0 Index 53h[0].	
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the expiration of the V 0 = No; 1 = Yes.	/GA Timer (F0 Index 8Eh)?
	SMI generation enabling is at F0 Index 83h[3].	
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a video retrace ever serial connection (PSERIAL register, bit 7) from the GX-series processor? 0 = No; 1 = Yes.	nt as decoded from the
	SMI generation enabling is at F0 Index 83h[2].	
4:2	Reserved (Read to Clear): Always reads 0.	
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio interface? 0 = N	No; 1 = Yes.
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.	
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by one of the power 0 = No; 1 = Yes.	er management resources?
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.	
	Note: The status for the General Purpose Timers and the User Device Defined Traps are check	ked separately in bit 9.
Note: Rea	ading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have another level (seco	ond) of status reporting.
	ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If the value of the re aring the SMI source (and consequently deasserting SMI), the Mirror register may be read instead	gister must be read withou

Geode[™] CS5530A

Functional Description (Continued)

Table 3-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear)

Bit	Description
1BAR	+Memory Offset 06h-07h Second Level Gen. Traps/Timers SMI Status Register (RC) Reset Value = 0000h
15:6	Reserved (Read to Clear)
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0].
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI was caused by a trapped I/O or memor access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[6].
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI was caused by a trapped I/O or memor access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[5].
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI was caused by a trapped I/O or memor access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 82h[4].
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9]. SMI generation enabling is at F0 Index 83h[1].
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was caused by the expiration of General Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[0].
Note:	Reading this register clears all the SMI status bits.
	A read-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the value of the register must be read without clearing the SMI source (and consequently deasserting SMI), the Mirror register may be read instead.

Bit	Description	
F0 Index	F4h Second Level Power Management Status Register 1 (RC)	Reset Value = 84h
7:5	Reserved	
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game port (I/0 0 = No; 1 = Yes.	O Port 200h and 201h)?
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[0].
	Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].	
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured)	GPIO7 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[3].	
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured)	GPIO5 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[2].	
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured)	GPIO4 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[1].	
0	GPIO3 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured)	GPIO3 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[0].	
Note: Pr	operly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause	an SMI.
	is register provides status on various power-management SMI events. Reading this register cle y (mirror) version of this register exists at F0 Index 84h.	ars the SMI status bits. A read

Table 3-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear) (Continued)

0 Index	F5h Second Level Power Management Status Register 2 (RC) Reset Value = 00
7	Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Video Idle Timer Count Register
•	(F0 Index A6h)? $0 = No; 1 = Yes.$
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[7].
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF3 Idl Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[6].
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF2 Id Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[5].
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the UDEF1 Id Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[4].
3	Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Keyboard/Mouse Idle
	Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[3].
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Parallel/Serial Port Idle Tim Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 81h[2].
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Disk Idle Timer Count Register (F0 Index 9Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[1].
0	Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Primary Hard Disk Idle Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[0].
du	s register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the device was idle for th ation configured in the Idle Timer Count register for that device, causing an SMI. Reading this register clears the SMI status s. A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be read without clearing SMI source (and consequently deasserting SMI), F0 Index 85h may be read instead.

Bit	Description	
F0 Index	F6h Second Level Power Management Status Register 3 (RC)	Reset Value = 00h
7	Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to th 0 = No; 1 = Yes.	ne Video I/O Trap?
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[7].	
6	Reserved (Read Only)	
5	Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped secondary hard disk? 0 = No; 1 = Yes.	d I/O access to the
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[6].	
4	Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of Count Register (F0 Index ACh)? 0 = No; 1 = Yes.	f the Hard Disk Idle Time
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 83h[7].	
3	Keyboard/Mouse Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O mouse? 0 = No; 1 = Yes.	access to the keyboard o
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[3].	
2	Parallel/Serial Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O acception parallel ports? 0 = No; 1 = Yes.	cess to either the serial o
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[2].	
1	Floppy Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O accelling floppy disk? 0 = No; 1 = Yes.	ss to the
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[1].	
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/0 primary hard disk? 0 = No; 1 = Yes.	O access to the
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Off	set 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].	
de of	is register provides status on the Device Traps to the SMI handler. A bit set here indicates that an a vice while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A this register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI asserting SMI), F0 Index 86h may be read instead.	read-only (mirror) versio

Table 3-34. Second Level Pwr Mgmnt SMI Status Reporting Registers (Read to Clear) (Continued)

Bit	Description
F0 Ind	ex F7h Second Level Power Management Status Register 4 (RO/RC) Reset Value = 001
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO2 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].
6	GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO1 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[1].
5	GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO0 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[0].
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin is configured as the li switch indicator, this bit reflects the state of the pin.
3	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.
	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index 90h[6] = 0) and as the lid switch (F0 Index 92h[6] =1).
2	Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a positive edge on SDATA_IN? 0 = No; 1 = Yes.
	This is the second level of status is reporting. The top level status is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 80h[5].
1	RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes.
	This SMI event can only occur while in 3V Suspend and RTC interrupt occurs.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
0	ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation configuration is at F0 Index 83h[5].
Note:	Properly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI.
	This register provides status on several miscellaneous power management events that generate SMIs, as well as the status of the Lid Switch. Reading this register clears the SMI status bits. A read-only (mirror) version of this register exists at F0 Index 87h.

3.4.3.6 Device Power Management Register Programming Summary

Table 3-35 provides a programming register summary of the device idle timers, address traps, and general purpose I/O pins. For complete bit information regarding the registers listed in Table 3-35, refer to Section 4.3.1 "Bridge Configuration Registers - Function 0" on page 153 and Section 4.3.2 "SMI Status and ACPI Timer Registers - Function 1" on page 182.

	Located at F0 Index xxh Unless Otherwise Noted				
Device Power Management Resource	Enable	Configuration	Second Level SMI Status/No Clear	Second Level SM Status/With Clear	
Global Timer Enable	80h[1]	N/A	N/A	N/A	
Keyboard / Mouse Idle Timer	81h[3]	93h[1:0]	85h[3]	F5h[3]	
Parallel / Serial Idle Timer	81h[2]	93h[1:0]	85h[2]	F5h[2]	
Floppy Disk Idle Timer	81h[1]	9Ah[15:0], 93h[7]	85h[1]	F5h[1]	
Video Idle Timer (Note 1)	81h[7]	A6h[15:0]	85h[7]	F5h[7]	
VGA Timer (Note 2)	83h[3]	8Eh[7:0]	F1BAR+Memory Offset 00h[6]	F1BAR+Memory Offset 02h[6]	
Primary Hard Disk Idle Timer	81h[0]	98h[15:0], 93h[5]	85h[0]	F5h[0]	
Secondary Hard Disk Idle Timer	83h[7]	ACh[15:0], 93h[4]	86h[4]	F6h[4]	
User Defined Device 1 Idle Timer	81h[4]	A0h[15:0], C0h[31:0], CCh[7:0]	85h[4]	F5h[4]	
User Defined Device 2 Idle Timer	81h[5]	A2h[15:0], C4h[31:0], CDh[7:0]	85h[5]	F5h[5]	
User Defined Device 3 Idle Timer	81h[6]	A4h[15:0], C8h[31:0], CEh[7:0]	85h[6]	F5h[6]	
Global Trap Enable	80h[2]	N/A	N/A	N/A	
Keyboard / Mouse Trap	82h[3]	9Eh[15:0] 93h[1:0]	86h[3]	F6h[3]	
Parallel / Serial Trap	82h[2]	9Ch[15:0], 93h[1:0]	86h[2]	F6h[2]	
Floppy Disk Trap	82h[1]	93h[7]	86h[1]	F6h[1]	
Video Access Trap	82h[7]	N/A	86h[7]	F6h[7]	
Primary Hard Disk Trap	82h[0]	93h[5]	86h[0]	F6h[0]	
Secondary Hard Disk Trap	83h[6]	93h[4]	86h[5]	F6h[5]	
User Defined Device 1 Trap	82h[4]	C0h[31:0], CCh[7:0]	F1BAR+Memory Offset 04h[2]	F1BAR+Memory Offset 06h[2]	
User Defined Device 2 Trap	82h[5]	C4h[31:0], CDh[7:0]	F1BAR+Memory Offset 04h[3]	F1BAR+Memory Offset 06h[3]	
User Defined Device 3 Trap	82h[6]	C8h[31:0], CEh[7:0]	F1BAR+Memory Offset 04h[4]	F1BAR+Memory Offset 06h[4]	
General Purpose Timer 1	83h[0]	88h[7:0], 89h[7:0], 8Bh[4]	F1BAR+Memory Offset 04h[0]	F1BAR+Memory Offset 06h[0]	
General Purpose Timer 2	83h[1]	8Ah[7:0], 8Bh[5,3,2]	F1BAR+Memory Offset 04h[1]	F1BAR+Memory Offset 06h[1]	
GPIO7 Pin	N/A	90h[7], 91h[7], 92h[7], 97h[7,3]	91h[7]	N/A	
GPIO6 Pin	N/A	90h[6], 91h[6], 92h[6]	87h[4,3], 91h[6]	F7h[4,3]	
GPIO5 Pin	N/A	90h[5], 91h[5], 97h[6,2]	91h[5]	N/A	
GPIO4 Pin	N/A	90h[4], 91h[4], 97h[5,1]	91h[4]	N/A	
GPIO3 Pin	N/A	90h[3], 91h[3], 97h[4,0]	91h[3]	N/A	
GPIO2 Pin	N/A	90h[2], 91h[2], 92h[5,2]	87h[7], 91h[2]	F7h[7]	
GPIO1 Pin	N/A	90h[1], 91h[1] 92h[4,1]	87h[6], 91h[1]	F7h[6]	
GPIO0 Pin	N/A	90h[0], 91h[0], 92h[3,0]	87h[5], 91h[0]	F7h[5]	
Suspend Modulation OFF/ON Video Speedup IRQ Speedup	96h[0] 80h[4] 80h[3]	94h[7:0]/95h[7:0] 8Dh[7:0] 8Ch[7:0]	N/A A8h[15:0] N/A	N/A N/A N/A	

Table 3-35. Device Power Management Programming Summary

Note: 1. This function is used for Suspend determination.

2. This function is used for SoftVGA, not power management. It is not affected by Global Power Enable.

Geode[™] CS5530A

Functional Description (Continued)

3.5 PC/AT COMPATIBILITY LOGIC

The CS5530A's PC/AT compatibility logic provides support for the standard PC architecture. This subsystem also provides legacy support for existing hardware and software. Support functions for the GX-series processor provided by these subsystems include:

- ISA Subtractive Decode
- ISA Bus Interface
 - Delayed PCI Transactions
 - Limited ISA and ISA Master Modes
- ROM Interface
- Megacells
 - Direct Memory Access (DMA)
 - Programmable Interval Timer
 - Programmable Interrupt Controller
 - PCI Compatible Interrupts

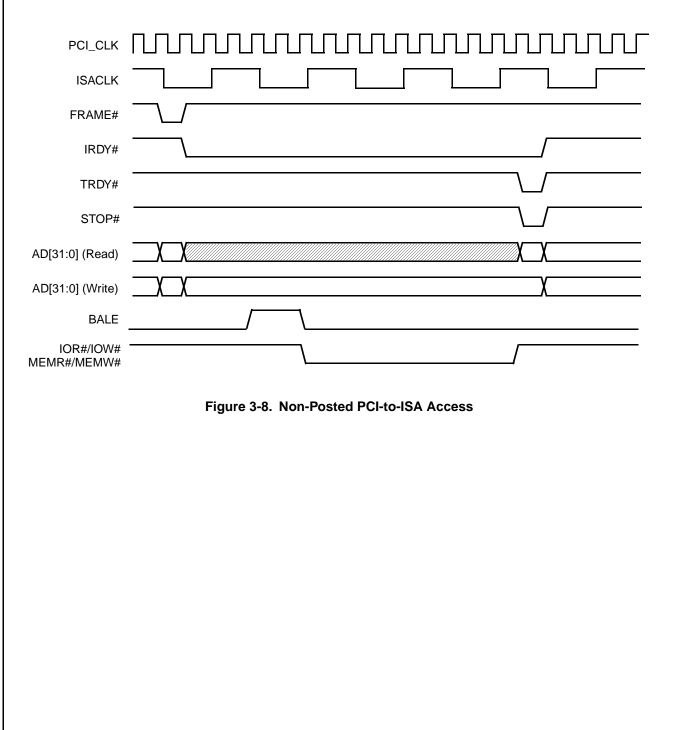
- I/O Ports 092h and 061h System Control
 I/O Port 092h System Control
 - I/O Port 061h System Control
 - SMI Generation for NMI
- Keyboard Interface Function
 Fast Keyboard Gate Address 20 and CPU Reset
- External Real-Time Clock Interface

The following subsections give a detailed description for each of these functions.

3.5.1 ISA Subtractive Decode

The CS5530A provides an ISA bus controller. The CS5530A is the default subtractive-decoding agent, and forwards all unclaimed memory and I/O cycles to the ISA interface. For reads and writes in the first 1 MB of memory (i.e., A23:A20 set to 0), MEMR# or MEMW# respectively will be asserted. However, the CS5530A can be configured using F0 Index 04h[1:0] to ignore either I/O, memory, or all unclaimed cycles (subtractive decode disabled, F0 Index 41h[2:1] = 1x). Table 3-36 shows these programming bits.

Table 3-36. Cycle Configuration Bits


1 Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. 0 = Disable; 1 = Enable (Default). 0 I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 = Enable (Default). F0 Index 41h PCI Function Control Register 2 (R/W) Reset Value = 10h 2:1 Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by another device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active)	Bit	Description	
0 I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 = Enable (Default). F0 Index 41h PCI Function Control Register 2 (R/W) Reset Value = 10h 2:1 Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by another device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active)	F0 Index 04h-05h PCI Command Register (R/W) Reset Value		Reset Value = 000Fh
F0 Index 41h PCI Function Control Register 2 (R/W) Reset Value = 10h 2:1 Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by another device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active)	1	Memory Space: Allow the CS5530A to respond to memory cycles from the PCI bus. 0 = Dis	sable; 1 = Enable (Default).
 2:1 Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that are not claimed by another device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 	0	I/O Space: Allow the CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable; 1 = E	Enable (Default) .
 device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can be moved up to the Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive decode must be done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 	F0 Index	41h PCI Function Control Register 2 (R/W)	Reset Value = 10h
1x = No subtractive decode	2:1	device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabli done with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active)	but can be moved up to the

3.5.2 ISA Bus Interface

The ISA bus controller issues multiple ISA cycles to satisfy PCI transactions that are larger than 16 bits. A full 32-bit read or write results in two 16-bit ISA transactions or four 8-bit ISA transactions. The ISA controller gathers the data from multiple ISA read cycles and returns TRDY# only after all of the data can be presented to the PCI bus at the same time.

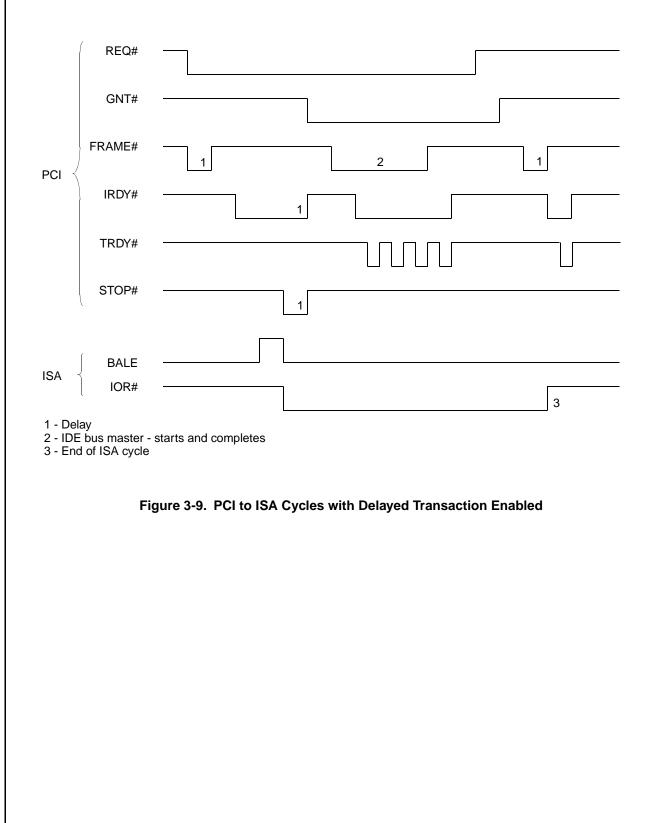

SA[23:0] are a concatenation of ISA LA[23:17] and SA[19:0] and perform equivalent functionality at a reduced pin count.

Figure 3-8 shows the relationship between a PCI cycle and the corresponding ISA cycle generated.

3.5.2.1 Delayed PCI Transactions

If PCI delayed transactions are enabled (F0 Index 42h[5] = 1) multiple PCI cycles occur for every slower ISA cycle. Figure 3-9 shows the relationship of PCI cycles to an ISA cycle with PCI delayed transactions enabled. See Section 3.2.6 "Delayed Transactions" on page 49 for additional information.

3.5.2.2 Limited ISA and ISA Master Modes

The CS5530A supports two modes on the ISA interface. The default mode of the ISA bus is a fully functional ISA mode, but it does not support ISA masters, as shown in Figure 3-10 "Limited ISA Mode". When in this mode, the address and data buses are multiplexed together, requiring an external latch to latch the lower 16 bits of address of the ISA cycle. The signal SA_LATCH is generated when the data on the SA/SD bus is a valid address. Additionally, the upper four address bits, SA[23:20], are multiplexed on GPI0[7:4].

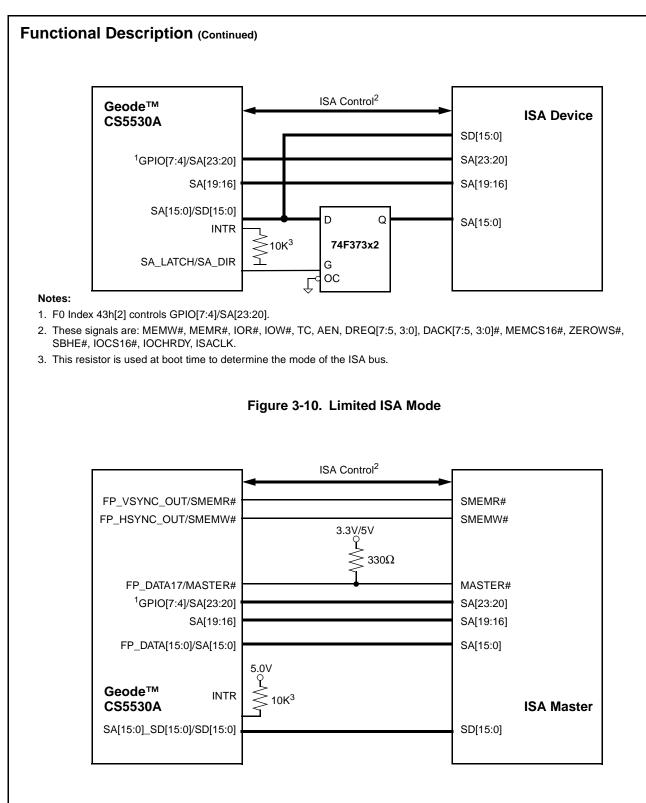
The second mode of the ISA interface supports ISA bus masters, as shown in Figure 3-11. When the CS5530A is placed in the ISA Master mode, a large number of pins are redefined as shown in Table 3-37.

In this mode of operation, the CS5530A cannot support TFT flat panels or TV controllers, since most of the signals used to support these functions have been redefined. This mode is required if ISA slots or ISA masters are used. ISA master cycles are only passed to the PCI bus if they access memory. I/O accesses are left to complete on the ISA bus.

The mode of operation is selected by the strapping of pin P26 (INTR):

- ISA Limited Mode Strap pin P26 (INTR) low through a 10-kohm resistor.
- ISA Master Mode Strap pin P26 (INTR) high through a 10-kohm resistor.

F0 Index 44h[7] (bit details on page 156) reports the strap value of the INTR pin (pin P26) during POR: 0 = ISA Limited; 1 = ISA Master.


This bit can be written after POR# deassertion to change the ISA mode selected. Writing to this bit is not recommended due to the actual strapping done on the board.

ISA memory and ISA refresh cycles are not supported by the CS5530A, although, the refresh toggle bit in I/O Port 061h still exists for software compatibility reasons.

Table 3-37.	Signal	Assignments
-------------	--------	-------------

Dia Ma		ISA Master
Pin No.	Limited ISA Mode	Mode
AD15	SA_LATCH	SA_DIR
AE25, AD24, AE22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AE9	SA[15:0]/SD[15:0]	SD[15:0]
H2, K1, K2, L1, D1, E2, F1, G1, G3, G4, G2, H1, J1, J3, J2, K3	FP_DATA[15:0]	SA[15:0]
H3	FP_DATA[16]	SA_OE#
F3	FP_DATA[17]	MASTER#
E1	FP_HSYNC_OUT	SMEMW#
E3	FP_VSYNC_OUT	SMEMR#
AF3 (Note)	SMEMW#	RTCCS#
AD4 (Note)	SMEMR#	RTCALE
AF23, AE23, AC21, AD22	GPIO[7:4] SA[23:20]	SA[23:20]

Note: If Limited ISA Mode of operation has been selected, SMEMW# and SMEMR# can be output on these pins by programming F0 Index 53[2] = 0 (bit details on page 157).

Notes:

- 1. When strapped for ISA Master mode, GPIO[7:4]/SA[23:20] are set to SA[23:20] and the settings in F0 Index 43h[2] are invalid.
- 2. These signals are: MEMW#, MEMR#, IOR#, IOW#, TC, AEN, DREQ[7:5, 3:0], DACK[7:5, 3:0]#, MEMCS16#, ZEROWS#, SBHE#, IOCS16#, IOCHRDY, ISACLK.
- 3. This resistor is used at boot time to determine the mode of the ISA bus.

Figure 3-11. ISA Master Mode

3.5.2.3 ISA Bus Data Steering

The CS5530A performs all of the required data steering from SD[7:0] to SD[15:0] during normal 8-bit ISA cycles, as well as during DMA and ISA master cycles. It handles data transfers between the 32-bit PCI data bus and the ISA bus. 8/16-bit devices can reside on the ISA bus. Various PCcompatible I/O registers, DMA controller registers, interrupt controller registers, and count registers (for loading timers) lie on the on-chip I/O data bus. Either the PCI bus master or the DMA controllers can become the bus owner.

When the PCI bus master is the bus owner, the CS5530A data steering logic provides data conversion necessary for 8/16/32-bit transfers to and from 8/16-bit devices on either the ISA bus or the 8-bit registers on the on-chip I/O data bus. When PCI data bus drivers of the CS5530A are tristated, data transfers between the PCI bus master and PCI bus devices are handled directly via the PCI data bus.

When the DMA requestor is the bus owner, the CS5530A allows 8/16-bit data transfer between the ISA bus and the PCI data bus.

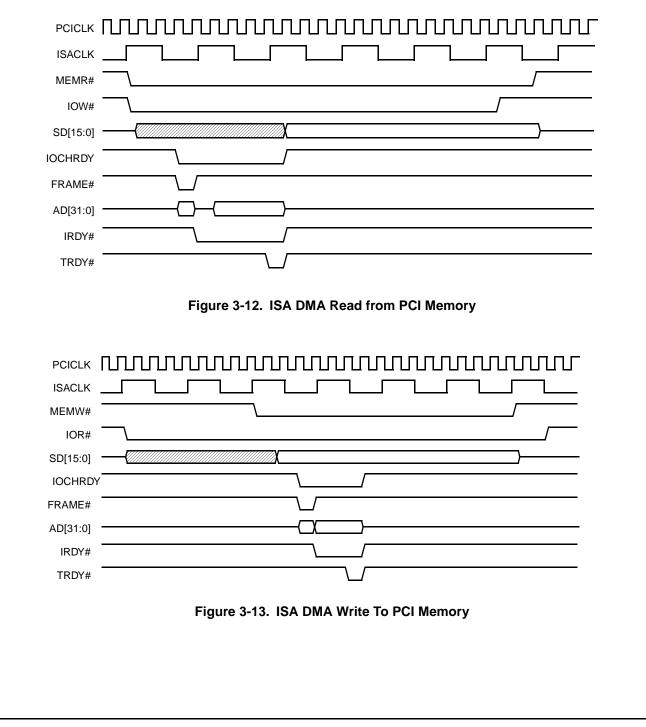
3.5.2.4 I/O Recovery Delays

In normal operation, the CS5530A inserts a delay between back-to-back ISA I/O cycles that originate on the PCI bus. The default delay is four ISACLK cycles. Thus, the second of consecutive I/O cycles is held in the ISA bus controller until this delay count has expired. The delay is measured between the rising edge of IOR#/IOW# and the falling edge of BALE. This delay can be adjusted to a greater delay through the ISA I/O Recovery Control Register (F0 Index 51h, see Table 3-38).

Note: This delay is not inserted for a 16-bit ISA I/O access that is split into two 8-bit I/O accesses.

Bit	Description			
F0 Index	51h	ISA I/O Recovery Con	trol Register (R/W)	Reset Value = 40h
7:4	-	se bits determine the number c reset one-clock delay built into		-to-back 8-bit I/O read cycles. This
	0000 = 1 ISA clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks
3:0	•	ese bits determine the number reset one-clock delay built into 0100 = 5 ISA clocks		k-to-back 16-bit I/O cycles. This 1100 = 13 ISA clocks
	0000 = 1 ISA Clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks

Table 3-38. I/O Recovery Programming Register


3.5.2.5 ISA DMA

DMA transfers occur between ISA I/O peripherals and system memory. The data width can be either 8 or 16 bits. Out of the seven DMA channels available, four are used for 8bit transfers while the remaining three are used for 16-bit transfers. One BYTE or WORD is transferred in each DMA cycle.

Note: The CS5530A does not support DMA transfers to ISA memory.

The ISA DMA device initiates a DMA request by asserting one of the DRQ[7:5, 3:0] signals. When the CS5530A receives this request, it sends a bus grant request to the PCI arbiter. After the PCI bus has been granted, the respective DACK# is driven active.

The CS5530A generates PCI memory read or write cycles in response to a DMA cycle. Figures 3-12 and 3-13 are examples of DMA memory read and memory write cycles. Upon detection of the DMA controller's MEMR# or MEMW# active, the CS5530A starts the PCI cycle, asserts FRAME#, and negates an internal IOCHRDY. This assures the DMA cycle does not complete before the PCI cycle has provided or accepted the data. IOCHRDY is internally asserted when IRDY# and TRDY# are sampled active.

3.5.3 ROM Interface

The CS5530A positively decodes memory addresses 000F0000h-000FFFFFh (64 KB) and FFFC0000h-FFFFFFFh (256 KB) at reset. These memory cycles cause the CS5530A to claim the cycle, and generate an ISA bus memory cycle with KBROMCS# asserted. The CS5530A can also be configured to respond to memory addresses FF000000h-FFFFFFFFh (16 MB) and 000E0000h-000FFFFFh (128 KB).

Flash ROM is supported in the CS5530A by enabling the KBROMCS# signal on write accesses to the ROM region. Normally only read cycles are passed to the ISA bus, and the KBROMCS# signal is suppressed. When the ROM Write Enable bit (F0 Index 52h[1]) is set, a write access to the ROM address region causes an 8-bit write cycle to occur with MEMW# and KBROMCS# asserted. Table 3-39 shows the ROM interface related programming bits.

3.5.4 Megacells

The CS5530A core logic integrates:

- Two 8237-equivalent DMA controllers (DMAC) with full 32-bit addressing for DMA transfers.
- Two 8259-equivalent interrupt controllers providing 13 individually programmable external interrupts.
- An 8254-equivalent timer for refresh, timer, and speaker logic.
- NMI control and generation for PCI system errors and all parity errors.
- Support for standard AT keyboard controllers, reset control, and VSA technology audio.

Bit	Description		
F0 Index 52h ROM/AT Logic Control Register (R/W)		Reset Value = F8h	
2	Upper ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = FFFC0000h-FFFFFFFh (256 KB, Default); 1 = FF000000h-FFFFFFFh (16 MB)		
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).		
1	ROM Write Enable: Assert KBROMCS# during writes to configured ROM space (configured in bits 2 and 0), allowing Flash programming. 0 = Disable; 1 = Enable.		
0	Lower ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = 000F0000h-000FFFFFh (64 KB, Default); 1 = 000E0000h-000FFFFFh (128 KB).		
	Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).		
F0 Index	5Bh Decode Control Register 2 (R/W)	Reset Value = 20h	
5	BIOS ROM Positive Decode: Selects PCI positive or subtractive decoding for accesses to the o 0 = Subtractive; 1 = Positive.	configured ROM space.	
	ROM configuration is at F0 Index 52h[2:0].		

Table 3-39. ROM Interface Related Bits

3.5.4.1 Direct Memory Access (DMA)

The 8237-compatible DMA controllers in the CS5530A control transfers between ISA I/O devices and system memory. They generate a bus request to the PCI bus when an I/O device requests a DMA operation. Once they are granted the bus, the DMA transfer cycle occurs. DMA transfers can occur over the entire 32-bit address range of the PCI bus. Software DMA is not supported.

The CS5530A contains registers for driving the high address bits (high page) and registers for generating the middle address bits (low page) output by the 8237 controller.

DMA Controllers

The CS5530A supports seven DMA channels using two standard 8237-equivalent controllers. DMA Controller 1 contains Channels 0 through 3 and supports 8-bit I/O adapters. These channels are used to transfer data between 8-bit peripherals and PCI memory or 8/16-bit ISA memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 64 KB pages.

DMA Controller 2 contains Channels 4 through 7. Channel 4 is used to cascade DMA Controller 1, so it is not available externally. Channels 5 through 7 support 16-bit I/O adapters to transfer data between 16-bit I/O adapters and 16-bit system memory. Using the high and low page address registers, a full 32-bit PCI address is output for each channel so they can all transfer data throughout the entire 4 GB system address space. Each channel can transfer data in 128 KB pages. Channels 5, 6, and 7 transfer 16-bit WORDs on even byte boundaries only.

DMA Transfer Modes

Each DMA channel can be programmed for single, block, demand or cascade transfer modes. In the most commonly used mode, single transfer mode, one DMA cycle occurs per DRQ and the PCI bus is released after every cycle. This allows the CS5530A to timeshare the PCI bus with the CPU. This is imperative, especially in cases involving large data transfers, so that the CPU does not get locked out for too long.

In block transfer mode, the DMA controller executes all of its transfers consecutively without releasing the PCI bus.

In demand transfer mode, DMA transfer cycles continue to occur as long as DRQ is high or terminal count is not reached. In this mode, the DMA controller continues to execute transfer cycles until the I/O device drops DRQ to indicate its inability to continue providing data. For this case, the PCI bus is held by the CS5530A until a break in the transfers occurs.

In cascade mode, the channel is connected to another DMA controller or to an ISA bus master, rather than to an I/O device. In the CS5530A, one of the 8237 controllers is designated as the master and the other as the slave. The HOLD output of the slave is tied to the DRQ0 input of the

master (Channel 4), and the master's DACK0# output is tied to the slave's HLDA input.

In each of these modes, the DMA controller can be programmed for read, write, or verify transfers.

Both DMA controllers are reset at Power On Reset (POR) to fixed priority. Since master Channel 0 is actually connected to the slave DMA controller, the slave's four DMA channels have the highest priority, with Channel 0 as highest and Channel 3 as the lowest. Immediately following slave Channel 3, master Channel 1 (Channel 5) is the next highest, followed by Channels 6 and 7.

DMA Controller Registers

The DMA controller can be programmed with standard I/O cycles to the standard register space for DMA. The I/O addresses of all registers for the DMA controller are listed in Table 4-27 "DMA Channel Control Registers" on page 220.

Addresses under Master are for the 16-bit DMA channels, and Slave corresponds to the 8-bit channels. When writing to a channel's address or word-count register, the data is written into both the base register and the current register simultaneously. When reading a channel address or word count register, only the current address or word count can be read. The base address and base word count are not accessible for reading.

DMA Transfer Types

Each of the seven DMA channels may be programmed to perform one of three types of transfers: read, write, or verify. The transfer type selected defines the method used to transfer a BYTE or WORD during one DMA bus cycle.

For read transfer types, the CS5530A reads data from memory and writes it to the I/O device associated with the DMA channel.

For write transfer types, the CS5530A reads data from the I/O device associated with the DMA channel and writes to the memory.

The verify transfer type causes the CS5530A to execute DMA transfer bus cycles, including generation of memory addresses, but neither the Read nor Write command lines are activated. This transfer type was used by DMA Channel 0 to implement DRAM refresh in the original IBM PC/XT.

DMA Priority

The DMA controller may be programmed for two types of priority schemes: fixed and rotate (I/O Ports 008h[4] and 0D0h[4]), as shown in Table 4-27 "DMA Channel Control Registers" on page 220.

In fixed priority, the channels are fixed in priority order based on the descending values of their numbers. Thus, Channel 0 has the highest priority. In rotate priority, the last channel to get service becomes the lowest-priority channel with the priority of the others rotating accordingly. This prevents a channel from dominating the system.

The address and word count registers for each channel are 16-bit registers. The value on the data bus is written into the upper byte or lower byte, depending on the state of the internal addressing byte pointer. This pointer can be cleared by the Clear Byte Pointer command. After this command, the first read/write to an address or word count register will read/write to the low byte of the 16-bit register and the byte pointer will point to the high byte. The next read/write to an address or word-count register will read or write to the high byte of the 16-bit register and the byte pointer will point back to the low byte.

When programming the 16-bit channels (Channels 5, 6, and 7), the address which is written to the base address register must be the real address divided by two. Also, the base word count for the 16-bit channels is the number of 16-bit WORDs to be transferred, not the number of bytes as is the case for the 8-bit channels.

The DMA controller allows the user to program the active level (low or high) of the DRQ and DACK# signals. Since the two controllers are cascaded together internally on the chip, these signals should always be programmed with the DRQ signal active high and the DACK# signal active low.

DMA Shadow Registers

The CS5530A contains a shadow register located at F0 Index B8h (Table 3-40) for reading the configuration of the DMA controllers. This read-only register can sequence to read through all of the DMA registers.

DMA Addressing Capability

DMA transfers occur over the entire 32-bit address range of the PCI bus. This is accomplished by using the DMA controller's 16-bit memory address registers in conjunction with an 8-bit DMA Low Page register and an 8-bit DMA High Page register. These registers, associated with each channel, provide the 32-bit memory address capability. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard. The starting address for the DMA transfer must be programmed into the DMA controller registers and the channel's respective Low and High Page registers prior to beginning the DMA transfer.

DMA Page Registers and Extended Addressing

The DMA Page registers provide the upper address bits during DMA cycles. DMA addresses do not increment or decrement across page boundaries. Page boundaries for the 8-bit channels (Channels 0 through 3) are every 64 KB and page boundaries for the 16-bit channels (Channels 5, 6, and 7) are every 128 KB.

Before any DMA operations are performed, the Page Registers must be written at the I/O Port addresses shown in Table 4-28 "DMA Page Registers" on page 223 to select the correct page for each DMA channel. The other address locations between 080h and 08Fh and 480h and 48Fh are not used by the DMA channels, but can be read or written by a PCI bus master. These registers are reset to zero at POR. A write to the Low Page register clears the High Page register, for backward compatibility with the PC/AT standard.

For most DMA transfers, the High Page register is set to zeros and is driven onto PCI address bits AD[31:24] during DMA cycles. This mode is backward compatible with the PC/AT standard. For DMA extended transfers, the High Page register is programmed and the values are driven onto the PCI addresses AD[31:24] during DMA cycles to allow access to the full 4 GB PCI address space.

DMA Address Generation

The DMA addresses are formed such that there is an upper address, a middle address, and a lower address portion.

The upper address portion, which selects a specific page, is generated by the Page registers. The Page registers for each channel must be set up by the system before a DMA operation. The DMA Page register values are driven on PCI address bits AD[31:16] for 8-bit channels and AD[31:17] for 16-bit channels.

Bit	Description	
F0 Index B8h DMA Shadow Register (RO) Reset Value		Reset Value = xxh
7:0	 DMA Shadow (Read Only): This 8-bit port sequences through the following list of shador power on, a pointer starts at the first register in the list and consecutively reads increment ister resets the read sequence to the first register. Each shadow register in the sequence that location. The read sequence for this register is: DMA Channel 0 Mode Register DMA Channel 1 Mode Register DMA Channel 2 Mode Register DMA Channel 3 Mode Register DMA Channel 4 Mode Register DMA Channel 5 Mode Register DMA Channel 6 Mode Register DMA Channel 7 Mode Register DMA Channel 7 Mode Register 	ntally through it. A write to this reg-
	10. DMA Busy Register (bit 0 or 1 means a DMA occurred within last 1 ms, all other bits	are 0)

Table 3-40. DMA Shadow Register

The middle address portion, which selects a block within the page, is generated by the DMA controller at the beginning of a DMA operation and any time the DMA address increments or decrements through a block boundary. Block sizes are 256 bytes for 8-bit channels (Channels 0 through 3) and 512 bytes for 16-bit channels (Channels 5, 6, and 7). The middle address bits are driven on PCI address bits AD[15:8] for 8-bit channels and AD[16:9] for 16-bit channels.

The lower address portion is generated directly by the DMA controller during DMA operations. The lower address bits are output on PCI address bits AD[7:0] for 8-bit channels and AD[8:1] for 16-bit channels.

SBHE# is configured as an output during all DMA operations. It is driven as the inversion of AD0 during 8-bit DMA cycles and forced low for all 16-bit DMA cycles.

3.5.4.2 Programmable Interval Timer

The CS5530A contains an 8254-equivalent Programmable Interval Timer (PIT) configured as shown in Figure 3-14. The PIT has three timers/counters, each with an input frequency of 1.19318 MHz (OSC divided by 12), and individually programmable to different modes.

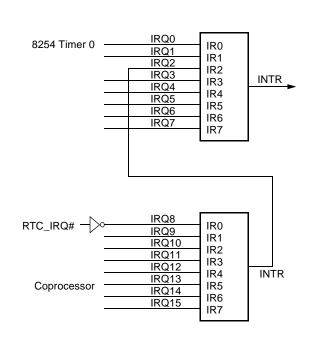
The gates of Counter 0 and 1 are usually enabled, however, they can be controlled via F0 Index 50h (see Table 3-41). The gate of Counter 2 is connected to I/O Port 061h[0]. The output of Counter 0 is connected internally to IRQ0. This timer is typically configured in Mode 3 (square wave output), and used to generate IRQ0 at a periodic rate to be used as a system timer function. The output of Counter 1 is connected to I/O Port 061h[4]. The reset state of I/O Port 061h[4] is 0 and every falling edge of Counter 1 output causes I/O Port 061h[4] to flip states. The output of Counter 2 is brought out to the PC_BEEP output. This output is gated with I/O Port 061h[1].

Bit	Description
F0 Index	50h PIT Control/ISA CLK Divider (R/W) Reset Value = 7Bh
7	PIT Software Reset: 0 = Disable; 1 = Enable.
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (OUT1) to pass to I/O Port 061h[4].
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high.
4	PIT Counter 0: 0 = Forces Counter 0 output (OUT0) to zero; 1 = Allows Counter 0 output (OUT0) to pass to IRQ0.
3	PIT Counter 0 Enable: 0 = Sets GATE0 input low; 1 = Sets GATE0 input high.
I/O Port (61h Port B Control Register (R/W) Reset Value = 00x01100b
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output (OUT2) to pass to the speaker.
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.
1.19318 MHz CLK0 OUT0 IRQ0 1.19318 MHz CLK1 F0 Index 50h[3] F0 Index 50h[4] F0 Index 50h[5] GATE0 OUT1 F0 Index 50h[6] F0 Index 50h[5] GATE1 OUT2 F0 Index 50h[6] I/O Port 061h[0] GATE2 OUT2 PC_BEEP A[1:0] A[1:0] WR# WR#	
	IOR# RD# Figure 3-14. PIT Timer

GeodeTM CS5530A

Functional Description (Continued)

PIT Registers


The PIT registers are summarized and bit formats are in Table 4-29 "Programmable Interval Timer Registers" on page 224.

PIT Shadow Register

The PIT registers are shadowed to allow for Save-to-Disk/RAM to save/restore the PIT state by reading the PIT's counter and write-only registers. The read sequence for the shadow register is listed in F0 Index BAh, Table 3-42.

3.5.4.3 Programmable Interrupt Controller

The CS5530A includes an AT-compatible Programmable Interrupt Controller (PIC) configuration with two 8259equivalent interrupt controllers in a master/slave configuration (Figure 3-15). These PIC devices support all x86 modes of operation except Special Fully Nested Mode.

Figure 3-15. PIC Interrupt Controllers

Table 3-42. PIT Shadow Register

Bit	Description	
F0 Index	BAh PIT Shadow Register (RO)	Reset Value = xxh
7:0	PIT Shadow (Read Only): This 8-bit port sequences through the following list of shadowed F registers. At power on, a pointer starts at the first register in the list and consecutively reads to this register resets the read sequence to the first register. Each shadow register in the sequence to that location.	o increment through it. A write
	The read sequence for this register is:	
	1. Counter 0 LSB (least significant byte)	
	2. Counter 0 MSB	
	3. Counter 1 LSB	
	4. Counter 1 MSB	
	5. Counter 2 LSB	
	6. Counter 2 MSB	
	7. Counter 0 Command Word	
	8. Counter 1 Command Word	
	9. Counter 2 Command Word	
	Note: The LSB/MSB of the count is the Counter base value, not the current value.	
	Bits [7:6] of the command words are not used.	

Of the 16 IRQs, four are mapped as shown in Table 3-43, leaving 12 external interrupts. The two controllers are cascaded through IRQ2. The internal 8254 PIT connects to IRQ0. The real-time clock interface chip (see Figure 3-18 "External RTC Interface" on page 107) and the external coprocessor interface (see Figure 3-1 "Processor Signal Connections" on page 42) connect to IRQ8# and IRQ13 respectively.

Table 3-43.	PIC Interrupt	Mapping
-------------	----------------------	---------

Master IRQ#	Mapping
IRQ0	Connected to the OUT0 (system timer) of the internal 8254 PIT.
IRQ2	Connected to the slave's INTR for a cascaded configuration.
IRQ8#	Connected to external real-time clock.
IRQ13	Connected to the coprocessor interface.
IRQ[15:14, 12:9, 7:3, 1]	External interrupts.

The CS5530A allows the PCI interrupt signals INTA#-INTD# (also known in industry terms as PIRQx#) to be routed internally to any IRQ signal. The routing can be modified through the CS5530A's configuration registers. If this is done, the IRQ input must be configured to be level-rather than edge-sensitive. IRQ inputs may be individually programmed to be active low, level-sensitive with the Interrupt Sensitivity configuration registers at I/O address space 4D0h and 4D1h. PCI interrupt configuration is discussed in further detail in Section 3.5.4.4 "PCI Compatible Interrupts" on page 101.

PIC Interrupt Sequence

A typical AT-compatible interrupt sequence is as follows. Any unmasked interrupt generates the INTR signal to the

CPU. The interrupt controller then responds to the interrupt acknowledge (INTA) cycles from the CPU. On the first INTA cycle the cascading priority is resolved to determine which of the two 8259 controllers output the interrupt vector onto the data bus. On the second INTA cycle the appropriate 8259 controller drives the data bus with the correct interrupt vector for the highest priority interrupt.

By default, the CS5530A responds to PCI INTA cycles because the system interrupt controller is located within the CS5530A. This may be disabled with F0 Index 40h[7] (see Table 3-44). When the CS5530A responds to a PCI INTA cycle, it holds the PCI bus and internally generates the two INTA cycles to obtain the correct interrupt vector. It then asserts TRDY# and returns the interrupt vector.

PIC I/O Registers

Each PIC contains registers located in the standard I/O address locations, as shown in Table 4-30 "Programmable Interrupt Controller Registers" on page 225.

An initialization sequence must be followed to program the interrupt controllers. The sequence is started by writing Initialization Command Word 1 (ICW1). After ICW1 has been written, the controller expects the next writes to follow in the sequence ICW2, ICW3, and ICW4 if it is needed. The Operation Control Words (OCW) can be written after initialization. The PIC must be programmed before operation begins.

Since the controllers are operating in cascade mode, ICW3 of the master controller should be programmed with a value indicating that IRQ2 input of the master interrupt controller is connected to the slave interrupt controller rather than an I/O device as part of the system initialization code. In addition, ICW3 of the slave interrupt controller should be programmed with the value 02h (slave ID) and corresponds to the input on the master controller.

Bit	Description	
F0 Index	40h PCI Function Control Register 1 (R/W)	Reset Value = 89h
7	PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI inter 0 = Disable; 1 = Enable.	rrupt acknowledge cycles.

Table 3-44. PCI INTA Cycle Disable/Enable Bit

PIC Shadow Register

The PIC registers are shadowed to allow for Save-to-Disk/RAM to save/restore the PIC state by reading the PIC's write-only registers. A write to this register resets the read sequence to the first register. The read sequence for the shadow register is listed in F0 Index B9h (Table 3-45).

Table 3-45. PIC Shadow Register

Bit	Description	
F0 Index B	9h PIC Shadow Register (RO)	Reset Value = xxh
7:0	PIC Shadow (Read Only): This 8-bit port sequences through the following list of shadowed Program troller registers. At power on, a pointer starts at the first register in the list and consecutively reads inc A write to this register resets the read sequence to the first register. Each shadow register in the sequence to that location.	crementally through it.
	The read sequence for this register is:	
	 PIC1 ICW1 PIC1 ICW2 PIC1 ICW3 PIC1 ICW4 - Bits [7:5] of ICW4 are always 0 PIC1 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) 	
	6. PIC1 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1	
	 PIC2 ICW1 PIC2 ICW2 PIC2 ICW3 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) 	
	12. PIC2 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1	
	Note: To restore OCW2 to shadow register value, write the appropriate address twice. First with the s then with the shadow register value ORed with C0h.	shadow register value,

3.5.4.4 PCI Compatible Interrupts

The CS5530A allows the PCI interrupt signals INTA#, INTB#, INTC#, and INTD# (also known in industry terms as PIRQx#) to be mapped internally to any IRQ signal with the PCI Interrupt Steering Registers 1 and 2, F0 Index 5Ch and 5Dh (Table 3-46). This reassignment does not disable the corresponding IRQ pin. Two interrupt signals may not be assigned to the same IRQ.

PCI interrupts are low-level sensitive, whereas PC/AT interrupts are positive-edge sensitive; therefore, the PCI interrupts are inverted before being connected to the 8259.

Although the controllers default to the PC/AT-compatible mode (positive-edge sensitive), each IRQ may be individually programmed to be edge or level sensitive using the Interrupt Edge/Level Sensitivity registers in I/O Port 4D0h and 4D1h, as shown in Table 3-47. However, if the controllers are programmed to be level-sensitive via ICW1, all interrupts must be level-sensitive. Figure 3-16 shows the PCI interrupt mapping for the master/slave 8259 interrupt controller.

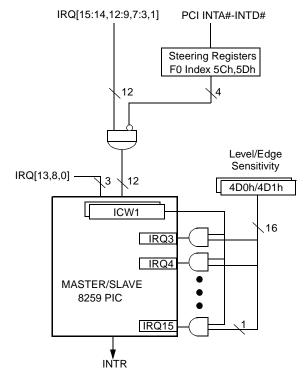


Figure 3-16. PCI and IRQ Interrupt Mapping

Bit	Description			
0 Index	5Ch	PCI Interrupt Stee	ring Register 1 (R/W)	Reset Value = 00
7:4	INTB# Target Interrup	t: Selects target interrupt for I	NTB#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD	1100 = IRQ12
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = RSVD
	0010 = RSVD	0110 = IRQ6	1010 = IRQ10	1110 = IRQ14
	0011 = IRQ3	0111 = IRQ7	1011 = IRQ11	1111 = IRQ15
3:0	INTA# Target Interrup	t: Selects target interrupt for I	NTA#.	
	0000 = Disable	0100 = IRQ4	1000 = RSVD '	1100 = IRQ12
		0404 1005	4004 1000	1101 = RSVD
	0001 = IRQ1	0101 = IRQ5	1001 = IRQ9	1101 = 100 0
	0001 = IRQ1 0010 = RSVD	0101 = IRQ5 0110 = IRQ6	1001 = IRQ9 1010 = IRQ10	1110 = IRQ14
CO	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility.	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt
	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1110 = IRQ14 1111 = IRQ15
CO	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W)	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt
co F0 Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh INTD# Target Interrup 0000 = Disable	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee	1010 = IRQ10 1011 = IRQ11 itive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12
co F0 Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	1010 = IRQ10 1011 = IRQ11 itive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD
co F0 Index	0010 = RSVD 0011 = IRQ3 ine target interrupt must first mpatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	1010 = IRQ10 1011 = IRQ11 itive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
co F0 Index	0010 = RSVD 0011 = IRQ3 ne target interrupt must firs mpatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5	1010 = IRQ10 1011 = IRQ11 itive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD
co F0 Index	0010 = RSVD 0011 = IRQ3 the target interrupt must first mpatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
co F0 Index 7:4	0010 = RSVD 0011 = IRQ3 the target interrupt must first mpatibility. 5Dh INTD# Target Interrup 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3	0110 = IRQ6 0111 = IRQ7 st be configured as level sensi PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14
co F0 Index 7:4	0010 = RSVD 0011 = IRQ3 te target interrupt must first 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt	0110 = IRQ6 0111 = IRQ7 st be configured as level sensit PCI Interrupt Stee et: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 et: Selects target interrupt for I	1010 = IRQ10 1011 = IRQ11 tive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#.	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15
co F0 Index 7:4	0010 = RSVD 0011 = IRQ3 te target interrupt must first 5Dh INTD# Target Interrupt 0000 = Disable 0001 = IRQ1 0010 = RSVD 0011 = IRQ3 INTC# Target Interrupt 0000 = Disable	0110 = IRQ6 0111 = IRQ7 st be configured as level sensit PCI Interrupt Stee ot: Selects target interrupt for I 0100 = IRQ4 0101 = IRQ5 0110 = IRQ6 0111 = IRQ7 ot: Selects target interrupt for I 0100 = IRQ4	1010 = IRQ10 1011 = IRQ11 itive via I/O Port 4D0h and 4D1 ring Register 2 (R/W) NTD#. 1000 = RSVD 1001 = IRQ9 1010 = IRQ10 1011 = IRQ11 NTC#. 1000 = RSVD	1110 = IRQ14 1111 = IRQ15 h in order to maintain PCI interrupt Reset Value = 00 1100 = IRQ12 1101 = RSVD 1110 = IRQ14 1111 = IRQ15 1100 = IRQ12

Table 3-46. PCI Interrupt Steering Registers

	Table 3-47. Interrupt Edge/Level Select Registers
Bit	Description
I/O Port 4I	D0h Interrupt Edge/Level Select Register 1 (R/W) Reset Value = 00
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
2	Reserved: Set to 0.
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
0	Reserved: Set to 0.
Notes: 1	. If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.
2	. This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (shared).
I/O Port 4I	D1h Interrupt Edge/Level Select Register 2 (R/W) Reset Value = 00
7	IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
6	IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
5	Reserved: Set to 0.
4	IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
3	IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
2	IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
1	IRQ9 Edge or Level Select: Selects PIC IRQ9 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1 and 2)
•	
0	Reserved: Set to 0.
0	Reserved: Set to 0. . If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.

3.5.5 I/O Ports 092h and 061h System Control

The CS5530A supports control functions of I/O Ports 092h (Port A) and 061h (Port B) for PS/2 compatibility. I/O Port 092h allows a fast assertion of the A20M# or CPU_RST. I/O Port 061h controls NMI generation and reports system status. Table 3-48 shows these register bit formats.

The CS5530A does not use a pin to control A20 Mask when used together with a GX-series processor. Instead, it generates an SMI for every internal change of the A20M# state and the SMI handler sets the A20M# state inside the CPU. This method is used for both the Port 092h (PS/2) and Port 061h (keyboard) methods of controlling A20M#.

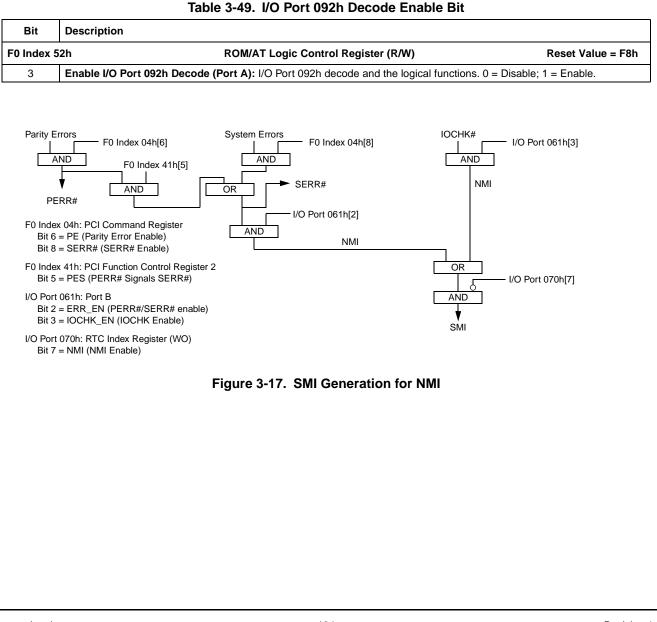
Table 3-48. I/O Ports 061h and 092h

Bit	Description	
I/O Port 0	61h Port B Control Register (R/W) Re	set Value = 00x01100b
7	PERR#/SERR# Status (Read Only): Was a PCI bus error (PERR#/SERR#) asserted by a PCI de 0 = No; 1 = Yes.	evice or by the CS5530A?
	This bit can only be set if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ERR_EN with a	1 or after reset.
6	IOCHK# Status (Read Only): Is an I/O device reporting an error to the CS5530A? 0 = No; 1 = Ye	S.
	This bit can only be set if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to IOCHK_EN with	th a 1 or after reset.
5	PIT OUT2 State (Read Only): This bit reflects the current status of the PIT Counter 2 (OUT2).	
4	Toggle (Read Only): This bit toggles on every falling edge of Counter 1 (OUT1).	
3	IOCHK Enable:	
	0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. Note that NMI is 1 = Ignores the IOCHK# input signal and does not generate NMI.	s under SMI control.
2	PERR#/SERR# Enable: Generates an NMI if PERR#/SERR# is driven active to report an error. 0 = Enable; 1 = Disable	
1	PIT Counter2 (SPKR): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Counter 2 output speaker.	(OUT2) to pass to the
0	PIT Counter2 Enable: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.	
I/O Port 0	92h Port A Control Register (R/W)	Reset Value = 02h
7:2	Reserved: Set to 0.	
1	A20M# SMI Assertion: Assert A20M#. 0 = Enable mask; 1 = Disable mask.	
0	Fast CPU Reset: WM_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.	
	This bit must be cleared before the generation of another reset.	

3.5.5.1 I/O Port 092h System Control

I/O Port 092h allows for a fast keyboard assertion of an A20# SMI and a fast keyboard CPU reset. Decoding for this register may be disabled via F0 Index 52h[3] (Table 3-49).

The assertion of a fast keyboard A20# SMI is controlled by either I/O Port 092h or by monitoring for the keyboard command sequence (see Section 3.5.6.1 "Fast Keyboard Gate Address 20 and CPU Reset" on page 106). If bit 1 of I/O Port 092h is cleared, the CS5530A internally asserts an A20M# SMI, which in turn causes an SMI to the processor. If bit 1 is set, A20M# SMI is internally deasserted again causing an SMI.


The assertion of a fast keyboard reset (WM_RST SMI) is controlled by bit 0 in I/O Port 092h or by monitoring for the keyboard command sequence. If bit 0 is changed from a 0 to a 1, the CS5530A generates a reset to the processor by generating a WM_RST SMI. When the WM_RST SMI occurs, the BIOS jumps to the Warm Reset vector. This bit remains set until the CS5530A is externally reset, or this bit is cleared by program control. Note that Warm Reset is not a pin; it is under SMI control.

3.5.5.2 I/O Port 061h System Control

Through I/O Port 061h, the speaker output can be enabled, NMI from IOCHK# or SERR# can be enabled, the status of IOCHK# and SERR# can be read, and the state of the speaker data (Timer2 output) and refresh toggle (Timer1 output) can be read back. Note that NMI is under SMI control. Even though the hardware is present, the IOCHK# pin does not exist so an NMI from IOCHK# can not happen.

3.5.5.3 SMI Generation for NMI

Figure 3-17 shows how the CS5530A can generate an SMI for an NMI. Note that NMI is not a pin.

3.5.6 Keyboard Interface Function

The CS5530A actively decodes the keyboard controller I/O Ports 060h and 064h, and generate an ISA I/O cycle with KBROMCS# asserted. Access to I/O Ports 062h and 066h must be enabled for KBROMCS# to be asserted. The CS5530A also actively decodes the keyboard controller I/O Ports 062h and 066h if F0 Index 5Bh[7] is set. Keyboard positive decoding can be disabled if F0 Index 5Ah[1] is cleared. Table 3-50 shows these two decoding bits.

Table 3-51 lists the standard keyboard control I/O registers and their bit formats.

	Table 3-50. Decode Control Registers	
Bit	Description	
F0 Index 5	Ah Decode Control Register 1 (R/W)	Reset Value = 03h
1	Keyboard Controller Positive Decode: Selects PCI positive or subtractive decoding for accesse 060h and 064h (and 062h/066h if enabled). 0 = Subtractive; 1 = Positive.	s to I/O Port
	itive decoding by the CS5530A speeds up the I/O cycle time. These I/O Ports do not exist in the CS ositive decode is enabled, the port exists on the ISA bus.	5530A. It is assumed that
F0 Index 5	Bh Decode Control Register 2 (R/W)	Reset Value = 20h
7	Keyboard I/O Port 062h/066h Decode: This alternate port to the keyboard controller is provided notebook keyboard controller mailbox. 0 = Disable; 1 = Enable.	in support of the 8051SL
	itive decoding by the CS5530A speeds up the I/O cycle time. The keyboard, LPT3, LPT2, and LPT? CS5530A. It is assumed that if positive decode is enabled, the port exists on the ISA bus.	I/O Ports do not exist in
r	Table 3-51. External Keyboard Controller Registers	
Bit	Description	
I/O Port 06	60h (R/W) External Keyboard Controller Data Register	
tures are e	Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard nabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequer A20M# pin or cause a warm CPU reset.	-
I/O Port 06	62h (R/W) External Keyboard Controller Mailbox Register	
-	Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h d Decode Control Register 2 (F0 Index 5Bh[7]).	ecode is enabled through
I/O Port 06	64h (R/W) External Keyboard Controller Command Register	
features ar	Controller Command Register: All accesses to this port are passed to the ISA bus. If the fast keyle e enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective seq the A20M# pin or cause a warm CPU reset.	
I/O Port 06	66h (R/W) External Keyboard Controller Mailbox Register	
	Controller Mailbox Register: Accesses to this port will assert KBROMCS# if the Port 062h/066h d Decode Control Register 2 (F0 Index 5Bh[7]).	ecode is enabled through

.

3.5.6.1 Fast Keyboard Gate Address 20 and CPU Reset

The CS5530A monitors the keyboard I/O Ports 064h and 060h for the fast keyboard A20M# and CPU reset control sequences. If a write to I/O Port 060h[1] = 1 after a write takes place to I/O Port 064h with data of D1h, then the CS5530A asserts the A20M# signal. A20M# remains asserted until cleared by:

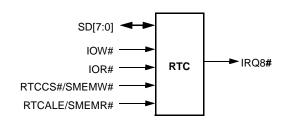
- (1) a write to bit 1 of I/O Port 092h,
- (2) a CPU reset of some kind, or
- (3) write to I/O Port 060h[1] = 0 after a write takes place to I/O Port 064h with data of D1h.

The CS5530A also monitors the keyboard ports for the CPU reset control sequence. If a write to I/O Port 060h with data bit 0 set occurs after a write to I/O Port 064h with data of D1h, the CS5530A asserts a WM_RST SMI.

The fast keyboard A20M# and CPU reset can be disabled through F0 Index 52h[7]. By default, bit 7 is cleared, and the fast keyboard A20M# and CPU reset monitor logic is active. If bit 7 is clear, the CS5530A forwards the commands to the keyboard controller.

By default, the CS5530A forces the deassertion of A20M# during a warm reset. This action may be disabled if F0 Index 52h[4] is cleared.

Table 3-52. A20 Associated Programming Bits


Bit	Description
F0 Index	52h ROM/AT Logic Control Register (R/W) Reset Value = F8h
7	Snoop Fast Keyboard Gate A20 and Fast Reset: Enables the snoop logic associated with keyboard commands for A20 Mask and Reset. 0 = Disable; 1 = Enable (snooping). If disabled, the keyboard controller handles the commands.
4	Enable A20M# Deassertion on Warm Reset: Force A20M# high during a Warm Reset (guarantees that A20M# is deasserted regardless of the state of A20). 0 = Disable; 1 = Enable.

3.5.7 External Real-Time Clock Interface

I/O Ports 070h and 071h decodes are provided to interface to an external real-time clock controller. I/O Port 070h, a write only port, is used to set up the address of the desired data in the controller. This causes the address to be placed on the ISA data bus, and the RTCALE signal to be triggered. A read of I/O Port 071h causes an ISA I/O read cycle to be performed while asserting the RTCCS# signal. A write to I/O Port 071h causes an ISA I/O write cycle to be performed with the desired data being placed on the ISA bus and the RTCCS# signal to be asserted. RTCCS#/ SMEMW# and RTCALE/SMEMR# are multiplexed pins. The function selection is made through F0 Index 53h[2].

The connection between the CS5530A and an external real-time clock is shown in Figure 3-18.

The CS5530A also provides the RTC Index Shadow Register (F0 Index BBh) to store the last write to I/O Port 070h. Table 3-53 shows the bit formats for the associated registers for interfacing with an external real-time clock.

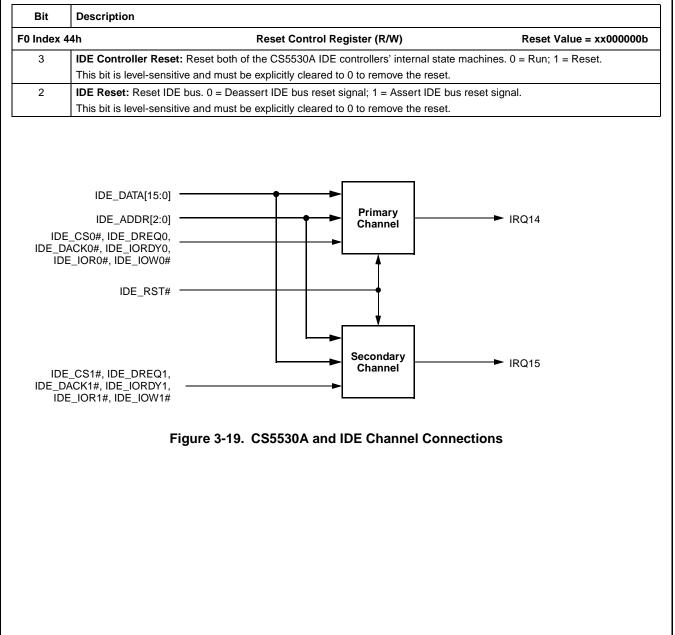
Figure 3-18. External RTC Interface

iggered.
iggered.
iggered.
ue = xxł
ue = 00ł
16

- ---

3.6 IDE CONTROLLER

The CS5530A integrates a fully-buffered, 32-bit, ANSI ATA-4-compliant (Ultra DMA33) IDE interface. The IDE interface supports two channels, primary and secondary, each supporting two devices that can operate in PIO Modes 1, 2, 3, 4, Multiword DMA, or Ultra DMA/133.


The IDE interface provides a variety of features to optimize system performance, including 32-bit disk access, post write buffers, bus master, Multiword DMA, look-ahead read buffer, and prefetch mechanism for each channel respectively.

The IDE interface timing is completely programmable. Timing control covers the command active and recover pulse widths, and command block register accesses. The IDE data-transfer speed for each device on each channel can be independently programmed allowing high-speed IDE peripherals to coexist on the same channel as older, compatible devices.

The CS5530A also provides a software-accessible buffered reset signal to the IDE drive, F0 Index 44h[3:2] (Table 3-54). The IDE_RST# signal is driven low during reset to the CS5530A and can be driven low or high as needed for device-power-off conditions.

3.6.1 IDE Interface Signals

The CS5530A has two completely separate IDE control signals, however, the IDE_RST#, IDE_ADDR[2:0] and IDE_DATA[15:0] are shared. The connections between the CS5530A and IDE devices are shown as Figure 3-19.

Table 3-54. IDE Reset Bits

3.6.2 IDE Configuration Registers

Registers for configuring the IDE interface are accessed through F2 Index 20h, the Base Address Register (F2BAR) in Function 2. F2BAR sets the base address for the IDE Controllers Configuration Registers as shown in Table 3-55. For complete bit information, refer to Section 4.3.3 "IDE Controller Registers - Function 2" on page 188.

The following subsections discuss CS5530A operational/programming details concerning PIO, Bus Master, and Ultra DMA/33 modes.

3.6.2.1 PIO Mode

The IDE data port transaction latency consists of address latency, asserted latency and recovery latency. Address latency occurs when a PCI master cycle targeting the IDE data port is decoded, and the IDE_ADDR[2:0] and IDE_CS# lines are not set up. Address latency provides the setup time for the IDE_ADDR[2:0] and IDE_CS# lines prior to IDE_IOR# and IDE_IOW#.

Asserted latency consists of the I/O command strobe assertion length and recovery time. Recovery time is provided so that transactions may occur back-to-back on the IDE interface without violating minimum cycle periods for the IDE interface.

If IDE_IORDY is asserted when the initial sample point is reached, no wait states are added to the command strobe assertion length. If IDE_IORDY is negated when the initial sample point is reached, additional wait states are added.

Recovery latency occurs after the IDE data port transactions have completed. It provides hold time on the IDE_ADDR[2:0] and IDE_CS# lines with respect to the read and write strobes (IDE_IOR# and IDE_IOW#). The PIO portion of the IDE registers is enabled through:

- Channel 0 Drive 0 Programmed I/O Register (F2BAR+I/O Offset 20h)
- Channel 0 Drive 1 Programmed I/O Register (F2BAR+I/O Offset 28h)
- Channel 1 Drive 0 Programmed I/O Register (F2BAR+I/O Offset 30h)
- Channel 1 Drive 1 Programmed I/O Register (F2BAR+I/O Offset 38h)

The IDE channels and devices can be individually programmed to select the proper address setup time, asserted time, and recovery time.

The bit formats for these registers are shown in Table 3-56. Note that there are different bit formats for each of the PIO programming registers depending on the operating format selected: Format 0 or Format 1.

F2BAR+I/O Offset 24h[31] (Channel 0 Drive 0 — DMA Control Register) sets the format of the PIO register. If bit 31 = 0, Format 0 is used and it selects the slowest PIO-MODE (bits [19:16]) per channel for commands. If bit 31 = 1, Format 1 is used and it allows independent control of command and data.

Also listed in the bit formats are recommended values for the different PIO modes.

Note: These are only recommended settings and are not 100% tested.

Table 3-55. Base Address Register (F2BAR) for IDE Support Registers

Bit	Description	
F2 Index 2	0h-23h Base Address Register - F2BAR (R/W)	Reset Value = 00000001h
-	er sets the base address of the I/O mapped bus mastering IDE and controller re a 128-byte I/O address range. Refer to Table 4-19 for the IDE configuration regis	
31:7	Bus Mastering IDE Base Address	
6:0	Address Range (Read Only)	

Table 3-56. PIO Programming Registers

Bit	Description		
F2BAR+I/	O Offset 20h-23h	Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)
If Offset 2	4h[31] = 0, Format 0: Sele	ects slowest PIOMODE per channel for commands.	
Format 0 s	ettings for: PIO Mode 0 = 0 PIO Mode 1 = 0 PIO Mode 2 = 0 PIO Mode 3 = 0 PIO Mode 4 = 0	00012171h 00020080h 00032010h	
31:20	Reserved: Set to 0.		
19:16	PIOMODE: PIO mode		
15:12	t2I: Recovery time (value	e + 1 cycle)	
11:8	t3: IDE_IOW# data setu	o time (value + 1 cycle)	
7:4	t2W: IDE_IOW# width m	inus t3 (value + 1 cycle)	
3:0	t1: Address Setup Time	(value + 1 cycle)	
	PIO Mode 1 = 2 PIO Mode 2 = 0 PIO Mode 3 = 2 PIO Mode 4 = 0	00803020h 20102010h	
31:28	t2IC: Command cycle re	covery time (value + 1 cycle)	
27:24	t3C: Command cycle ID	E_IOW# data setup (value + 1 cycle)	
23:20	t2WC: Command cycle	DE_IOW# pulse width minus t3 (value + 1 cycle)	
19:16	t1C: Command cycle ad	dress setup time (value + 1 cycle)	
15:12	t2ID: Data cycle recover	y time (value + 1 cycle)	
11:8	t3D: Data cycle IDE_IOV	V# data setup (value + 1 cycle)	
7:4	t2WD: Data cycle IDE_I	OW# pulse width minus t3 (value + 1 cycle)	
3:0	,	Setup Time (value + 1 cycle)	
Note: The	e reset value of this registe	r is not a valid PIO Mode.	
Offset 28h	n-2Bh	Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channel (Drive 1 Programmed I/O	Control Register: Refer to F2BAR+I/O Offset 20h for b	bit descriptions.
Offset 30h	1-33h	Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h
Channel 1	Drive 0 Programmed I/O	Control Register: Refer to F2BAR+I/O Offset 20h for b	bit descriptions.
Offset 38h	n-3Bh	Channel 1 Drive 1 PIO Register (R/W)	Reset Value = 0000E132h
Channeld	Drive 1 Brearsmood 1/0	Control Register: Refer to F2BAR+I/O Offset 20h for b	ait descriptions

3.6.2.2 Bus Master Mode

Two IDE bus masters are provided to perform the data transfers for the primary and secondary channels. The CS5530A off-loads the CPU and improves system performance in multitasking environments.

The bus master mode programming interface is an extension of the standard IDE programming model. This means that devices can always be dealt with using the standard IDE programming model, with the master mode functionality used when the appropriate driver and devices are present. Master operation is designed to work with any IDE device that supports DMA transfers on the IDE bus. Devices that work in PIO mode can only use the standard IDE programming model.

The IDE bus masters use a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Physical Region Descriptor Table Address

Before the controller starts a master transfer it is given a pointer (shown in Table 3-57) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The PRDs must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

Primary and Secondary IDE Bus Master Registers

The IDE Bus Master Registers for each channel (primary and secondary) have an IDE Bus Master Command Register and Bus Master Status Register. These registers must be accessed individually; a 32-bit DWORD access attempting to include both the Command and Status registers may not operate correctly. Bit formats of these registers are given in Table 3-58.

Bit	Description		
F2BAR+I/O	Offset 04h-07h	IDE Bus Master 0 PRD Table Address — Primary (R/W)	Reset Value = 00000000h
31:2	Pointer to the Phys	ical Region Descriptor Table: This register is a PRD table pointer for	or IDE Bus Master 0.
	'	gister points to the first entry in a PRD table. Once IDE Bus Master 0 i inter and updates this register to the next PRD by adding 08h.	s enabled (Command Register bit
	When read, this regi	ster points to the next PRD.	
1:0	Reserved: Set to 0.		
F2BAR+I/O	Offset 0Ch-0Fh	IDE Bus Master 1 PRD Table Address — Secondary (R/W)	Reset Value = 00000000h
31:2	Pointer to the Phys	ical Region Descriptor Table: This register is a PRD table pointer for	or IDE Bus Master 1.
		gister points to the first entry in a PRD table. Once IDE Bus Master 1 i inter and updates this register to the next PRD by adding 08h.	s enabled (Command Register bit
	When read, this regi	ster points to the next PRD.	
1:0	Reserved: Set to 0.		

Table 3-57. IDE Bus Master PRD Table Address Registers

Table 3-58. IDE Bus Master Command and Status Registers

Bit	Description	
2BAR+I/C	0 Offset 00h IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1	= PCI writes performed.
	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma	
	Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, i	
	is set to 0 while a bus master operation is active, the command is aborted and the data transfe carded. This bit should be reset after completion of data transfer.	rred from the drive is dis-
2BAR+I/C	D Offset 02h IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independe	
,	0 = Yes; 1 = No (simplex mode).	sindy:
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
4.3	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	
2	Write 1 to clear.	
1	Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes	
1	Write 1 to clear.	
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.	
-		Reset Value = 00000000
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE	
	When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is ena $0 = 1$, it loads the pointer and updates this register to the next PRD by adding 08h.	abled (Command Register
	0 = 1], it loads the pointer and updates this register to the next 1 KD by adding 001.	
	When read, this register points to the next PRD	
1:0	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	Depart Value 00
2BAR+I/C	Reserved: Set to 0. O Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W)	Reset Value = 00
52BAR+I/C 7:4	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads.	
2BAR+I/C	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1	
7:4 3	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active.	
7:4 3 2:1	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	· · · · · · · · · · · · · · · · · · ·
F2BAR+I/C 7:4 3	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master	I = PCI writes performed.
F2BAR+I/C 7:4 3 2:1	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, in	 PCI writes performed. ster. t can not be resumed. If bit
2BAR+I/C 7:4 3 2:1	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer	 PCI writes performed. ster. t can not be resumed. If bit
2BAR+I/C 7:4 3 2:1 0	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfe carded. This bit should be reset after completion of data transfer.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis-
7:4 3 2:1 0	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W)	 PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00
2BAR+I/C 7:4 3 2:1 0	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independent	 PCI writes performed. ster. t can not be resumed. If bin rred from the drive is dis- Reset Value = 00
2BAR+I/C 7:4 3 2:1 0 52BAR+I/C 7	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independed 0 = Yes; 1 = No (simplex mode).	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?
2BAR+I/C 7:4 3 2:1 0 52BAR+I/C 7 6	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, if is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independed 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?
2BAR+I/C 7:4 3 2:1 0 5 2BAR+I/C 7 6 5	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?
F2BAR+I/C 7:4 3 2:1 0 F2BAR+I/C 7 6 5 4:3	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?
2BAR+I/C 7:4 3 2:1 0 2BAR+I/C 7 6 5	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfer carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?
F2BAR+I/C 7:4 3 2:1 0 F2BAR+I/C 7 6 5 4:3 2	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfe carded. This bit should be reset after completion of data transfer. O Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	I = PCI writes performed. ster. t can not be resumed. If bir rred from the drive is dis- Reset Value = 00 ently?
F2BAR+I/C 7:4 3 2:1 0 F2BAR+I/C 7 6 5 4:3	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfe carded. This bit should be reset after completion of data transfer. Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear. Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes.	I = PCI writes performed. ster. t can not be resumed. If bir rred from the drive is dis- Reset Value = 00 ently?
2BAR+I/C 7:4 3 2:1 0 2BAR+I/C 7 6 5 4:3 2	Reserved: Set to 0. Offset 08h IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable ma Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it is set to 0 while a bus master operation is active, the command is aborted and the data transfe carded. This bit should be reset after completion of data transfer. O Offset 0Ah IDE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independe 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads. Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	I = PCI writes performed. ster. t can not be resumed. If bit rred from the drive is dis- Reset Value = 00 ently?

Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 3-59. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. This pointer must be 16-byte aligned. The second DWORD contains the size (16 bits) of the buffer and the EOT flag. The size must be in multiples of 16 bytes. The EOT bit (bit 31) must be set to indicate the last PRD in the PRD table.

Programming Model

The following steps explain how to initiate and maintain a bus master transfer between memory and an IDE device.

- Software creates a PRD table in system memory. Each PRD entry is 8 bytes long, consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT bit set.
- 2) Software loads the starting address of the PRD table by programming the PRD Table Address Register.

- Software must fill the buffers pointed to by the PRDs with IDE data.
- 4) Write 1 to the Bus Master Interrupt bit and Bus Master Error (Status Register bits 2 and 1) to clear the bits.
- 5) Set the correct direction to the Read or Write Control bit (Command Register bit 3).
- 6) Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).
- 7) The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.
- 8) The bus master transfers data to/from memory responding to bus master requests from the IDE device. At the completion of each PRD, the bus master's next response depends on the settings of the EOT flag in the PRD. If the EOT bit is set, then the IDE bus master clears the Bus Master Active bit (Status Register bit 0) and stops. If any errors occurred during the transfer, the bus master sets the Bus Master Error bit (Status Register bit 1).

										J-J.		i i i y	310		ιις	10	שו	030	, i i b			/	aı									
				By	te 3							Byt	te 2							By	te 1							Ву	te O			
DWORD	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0							Men	nory	/ Re	gion	Ph	ysica	al Ba	ase	Add	ress	[31	:4] (IDE	Dat	a Bu	uffer))						0	0	0	0
1	E O T							Re	ser	ved											S	Size	[15:	4]					0	0	0	0

Table 3-59. Physical Region Descriptor Format

3.6.2.3 Ultra DMA/33 Mode

The CS5530A supports Ultra DMA/33. It utilizes the standard IDE Bus Master functionality to interface, initiate, and control the transfer. Ultra DMA/33 definition also incorporates a Cyclic Redundancy Check (CRC) error checking protocol to detect errors.

The Ultra DMA/33 protocol requires no extra signal pins on the IDE connector. The CS5530A redefines three standard IDE control signals when in Ultra DMA/33 mode. These definitions are shown in Table 3-60.

CS5530A IDE Channel Signal	Ultra DMA/33 Read Cycle	Ultra DMA/33 Write Cycle
IDE_IOW#	STOP	STOP
IDE_IOR#	DMARDY#	STROBE
IDE_IORDY	STROBE	DMARDY#

All other signals on the IDE connector retain their functional definitions during the Ultra DMA/33 operation.

IDE_IOW# is defined as STOP for both read and write transfers to request to stop a transaction.

IDE_IOR# is redefined as DMARDY# for transferring data from the IDE device to the CS5530A. It is used by the CS5530A to signal when it is ready to transfer data and to add wait states to the current transaction. IDE_IOR# signal is defined as STROBE for transferring data from the CS5530A to the IDE device. It is the data strobe signal driven by the CS5530A on which data is transferred during each rising and falling edge transition.

IDE_IORDY is redefined as STROBE for transferring data from the IDE device to the CS5530A during a read cycle. It is the data strobe signal driven by the IDE device on which data is transferred during each rising and falling edge transition. IDE_IORDY is defined as DMARDY# during a write cycle for transferring data from the CS5530A to the IDE device. It is used by the IDE device to signal when it is ready to transfer data and to add wait states to the current transaction.

Ultra DMA/33 data transfer consists of three phases, a startup phase, a data transfer phase and a burst termination phase.

The IDE device begins the startup phase by asserting IDE_DREQ. When ready to begin the transfer, the CS5530A asserts IDE_DACK#. When IDE_DACK# is asserted, the CS5530A drives IDE_CS0# and IDE_CS1# asserted, and IDE_ADDR[2:0] low. For write cycles, the CS5530A negates STOP, waits for the IDE device to assert DMARDY#, and then drives the first data WORD and STROBE signal. For read cycles, the CS5530A negates STOP, and asserts DMARDY#. The IDE device then sends the first data WORD and asserts STROBE.

The data transfer phase continues the burst transfers with the CS5530A and the IDE via providing data, toggling STROBE and DMARDY#. IDE_DATA[15:0] is latched by the receiver on each rising and falling edge of STROBE. The transmitter can pause the burst cycle by holding STROBE high or low, and resume the burst cycle by again toggling STROBE. The receiver can pause the burst cycle by negating DMARDY# and resumes the burst cycle by asserting DMARDY#.

The current burst cycle can be terminated by either the transmitter or the receiver. A burst cycle must first be paused as described above before it can be terminated. The CS5530A can then stop the burst cycle by asserting STOP, with the IDE device acknowledging by negating IDE_DREQ. The IDE device stops the burst cycle by negating IDE_DREQ and the CS5530A acknowledges by asserting STOP. The transmitter then drives the STROBE signal to a high level. The CS5530A then puts the result of the CRC calculation onto IDE_DATA[15:0] while deasserting IDE_DACK#. The IDE device latches the CRC value on the rising edge of IDE_DACK#.

The CRC value is used for error checking on Ultra DMA/33 transfers. The CRC value is calculated for all data by both the CS5530A and the IDE device during the Ultra DMA/33 burst transfer cycles. This result of the CRC calculation is based on all data transferred with a valid STROBE edge while IDE_DACK# is asserted. At the end of the burst transfer, the CS5530A drives the result of the CRC calculation onto IDE_DATA[15:0] which is then strobed by the deassertion of IDE_DACK#. The IDE device compares the CRC result of the CS5530A to its own and reports an error if there is a mismatch.

The timings for Ultra DMA/33 are programmed into the DMA control registers:

- Channel 0 Drive 0 DMA Control Register (F2BAR+I/O Offset 24h)
- Channel 0 Drive 1 DMA Control Register (F2BAR+I/O Offset 2Ch)
- Channel 1 Drive 0 DMA Control Register (F2BAR+I/O Offset 34h)
- Channel 1 Drive 1 DMA Control Register (F2BAR+I/O Offset 3Ch)

The bit formats for these registers are given in Table 3-61. Note that F2BAR+I/O Offset 24h[20] is used to select either Multiword or Ultra DMA mode. Bit 20 = 0 selects Multiword DMA mode. If bit 20 = 1, then Ultra DMA/33 mode is selected. Once mode selection is made using this bit, the remaining DMA Control Registers also operate in the selected mode.

Also listed in the bit formats are recommended values for both Multiword DMA Modes 0-2 and Ultra DMA/33 Modes 0-2.

Note: These are only recommended settings and are not 100% tested.

Geode[™] CS5530A

Functional Description (Continued)

Table 3-61. MDMA/UDMA Control Registers

Bit	Description
F2BAR+I/	Channel 0 Drive 0 DMA Control Register (R/W) Reset Value = 00077771h
If bit 20 =	D. Multiword DMA
	 Multiword DMA Mode 0 = 00077771h Multiword DMA Mode 1 = 00012121h Multiword DMA Mode 2 = 00002020h
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.
30:21	Reserved: Set to 0.
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.
19:16	tKR: IDE_IOR# recovery time (4-bit) (value + 1 cycle)
15:12	tDR: IDE_IOR# pulse width (value + 1 cycle)
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1#
	I, Ultra DMA ·: Ultra DMA Mode 0 = 00921250h Ultra DMA Mode 1 = 00911140h Ultra DMA Mode 2 = 00911030h
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.
30:21	Reserved: Set to 0.
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = tMLI + tSS)
15:12	tSS: UDMA out (value + 1 cycle)
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)
	Channel 0 Drive 1 DMA Control Register (R/W) Reset Value = 00017771h Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. we the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.
Offset 34h	-37h Channel 1 Drive 0 DMA Control Register (R/W) Reset Value = 00017771h
	Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions. The PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.
Offset 3Ch	-3Fh Channel 1 Drive 1 DMA Control Register (R/W) Reset Value = 00017771h
Channel 1	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.
Note: One	the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is defined as reserved, read only.

115

3.7 XPRESSAUDIO

Through XpressAUDIO, the CS5530A offers a combined hardware/software support solution to meet industry standard audio requirements. XpressAUDIO uses Virtual System Architecture[®] (VSA[™]) technology along with additional hardware features to provide the necessary support for industry standard 16-bit stereo synthesis and OPL3 emulation.

The hardware portion of XpressAUDIO is for transporting streaming audio data to/from the system memory and an AC97 codec. This hardware includes:

- Six (three inbound/three outbound) buffered PCI bus mastering engines that drive specific AC97 interface slots.
- Interfaces to AC97 codecs (e.g., National's LM4548) for audio input/output.

Additional hardware provides the necessary functionality for VSA technology. This hardware includes the ability to:

- Generate an SMI to alert software to update required data. An SMI is generated when either audio buffer is half empty or full. If the buffers become completely empty or full, the Empty bit is asserted.
- Generate an SMI on I/O traps.
- Trap accesses for sound card compatibility at either I/O Port 220h-22Fh, 240h-24Fh, 260h-26Fh, or 280h-28Fh.
- Trap accesses for FM compatibility at I/O Port 388h-38Bh.
- Trap accesses for MIDI UART interface at I/O Port 300h-301h or 330h-331h.

- Trap accesses for serial input and output at COM2 (I/O Port 2F8h-2FFh) or COM4 (I/O Port 2E8h-2EFh).
- Support trapping for low (I/O Port 00h-0Fh) and/or high (I/O Port C0h-DFh) DMA accesses.
- Support hardware status register reads in CS5530A, minimizing SMI overhead.
- Support is provided for software-generated IRQs on IRQ 2, 3, 5, 7, 10, 11, 12, 13, 14, and 15.

Included in the following subsections are details regarding the registers used for configuring the audio interface. The registers are accessed through F3 Index 10h, the Base Address Register (F3BAR) in Function 3. F3BAR sets the base address for XpressAUDIO support registers as shown in Table 3-62.

3.7.1 Subsystem Data Transport Hardware

The data transport hardware can be broadly divided into two sections: bus mastering and the codec interface.

3.7.1.1 Audio Bus Masters

The CS5530A audio hardware includes six PCI bus masters (three for input and three for output) for transferring digitized audio between memory and the external codec. With these bus master engines, the CS5530A off-loads the CPU and improves system performance.

The programming interface defines a simple scatter/gather mechanism allowing large transfer blocks to be scattered to or gathered from memory. This cuts down on the number of interrupts to and interactions with the CPU.

Table 3-62. Base Address Register (F3BAR) for XpressAUDIO Registers

Bit Description f3 Index 10h-13h Base Address Register - F3BAR (R/W) Reset Value = 0000000h This register sets the base address of the memory mapped audio interface control register block. This is a 128-byte block of registers used to control the audio FIFO and codec interface, as well as to support SMIs produced by VSA technology. Bits [6:0] are read only (0000 0000), indicating a 128-byte memory address range. Refer to Table 4-21 for the bit formats and reset values of the XpressAUDIO registers. 31:7 Audio Interface Base Address 6:0 Address Range (Read Only)

The six bus masters that directly drive specific slots on the AC97 interface:

- Audio Bus Master 0
 - Output to codec
 - PCI read
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 1
 - Input from codec
 - PCI write
 - 32-Bit
 - Left and right channels
 - Slots 3 and 4
- Audio Bus Master 2
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 5
- Audio Bus Master 3
 - Input from codec
 - PCI write
 - 16-Bit
 - Slot 5

- Audio Bus Master 4
 - Output to codec
 - PCI read
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot)
- Audio Bus Master 5
- Input from codec
 - PCI write
 - 16-Bit
 - Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot)

Bus Master Audio Configuration Registers

The format for the bus master audio configuration registers is similar in that each bus master has a Command Register, an SMI Status Register and a PRD Table Address Register. Programming of the bus masters is generic in many ways, although specific programming is required of bit 3 in the Command Register. This bit selects read or write control and is dependent upon which Audio Bus Master is being programmed. For example, Audio Bus Master 0 is defined as an output only, so bit 3 of Audio Bus Master 0 Command Register (F3BAR+Memory Offset 20h[3]) must always be set to 1.

Table 3-63. Generic Bit Formats for Audio Bus Master Configuration Registers

Bit	Description
	Command Register (R/W)
7:4	Reserved: Set to 0. Must return 0 on reads.
3	Read or Write Control: Set the transfer direction of Audio Bus Master X: 0 = Memory reads performed (output to codec); 1 = Memory writes performed (input from codec).
	This bit should not be changed when the bus master is active. The setting of this bit is dependent upon the assigned bus master.
2:1	Reserved: Set to 0. Must return 0 on reads.
0	Bus Master Control: Controls the state of the Audio Bus Master X: 0 = Disable; 1 = Enable.
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must either be paused or have reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including the possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset.
Note: Th	s register must be read and written as a BYTE.
	SMI Status Register (RC)
7:2	Reserved (Read to Clear)
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP (end of page) before software has cleared the first? 0 = No; 1 = Yes.
	If hardware encounters a second EOP before software has cleared the first, it causes the bus master to pause until this reg- ister is read to clear the error.
	Must be R/W as a byte.
0	End of Page (Read to Clear) : Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.
Note: Mu	st be read and written as a BYTE.
	PRD Table Address (R/W)
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master X.
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master X is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.
	When read, this register points to the next PRD.
1:0	Reserved: Set to 0.

Table 3-63 on page 117 explains the generic format for the six audio bus masters. Table 3-64 gives the register locations, reset values and specific programming information of

bit 3, Read or Write Control, in the Command Register for the Audio Bus Masters.

Table 3-64. Audio Bus Master Configuration Register Summary

Bit	Description		
Audio Bu:	Master 0: Output to Codec; 32	-Bit; Left and Right Channels; Slots 3 and 4.	
F3BAR+M F3BAR+M	emory Offset 20h emory Offset 21h emory Offset 22h-23h emory Offset 24h-27h	Command Register (R/W) SMI Status Register (RC) Reserved PRD Table Address (R/W)	Reset Value = 00 Reset Value = 00 Reset Value = xx Reset Value = 00000000
Refer to Ta	ble 3-63 on page 117 for bit desc		
	-	2-Bit; Left and Right Channels; Slots 3 and 4.	
F3BAR+M	emory Offset 28h	Command Register (R/W)	Reset Value = 00
F3BAR+M	emory Offset 29h	SMI Status Register (RC)	Reset Value = 00
	emory Offset 2Ah-2Bh	Reserved	Reset Value = xx
	emory Offset 2Ch-2Fh	PRD Table Address (R/W)	Reset Value = 00000000
	-		
	ble 3-63 on page 117 for bit desc 3 of the Command Register must	riptions. be set to 1 (memory write) for correct operation.	
	s Master 2: Output to Codec; 16		
	emory Offset 30h	Command Register (R/W)	Reset Value = 00
	emory Offset 31h	SMI Status Register (RC)	Reset Value = 00
	•	Reserved	Reset Value = xx
	emory Offset 32h-33h		
F3BAR+M	emory Offset 34h-37h	PRD Table Address (R/W)	Reset Value = 00000000
Refer to Ta	ble 3-63 on page 117 for bit desc	riptions.	
Note: Bit	3 of the Command Register must	be set to 0 (memory read) for correct operation.	
Audio Bus	s Master 3: Input from Codec; 1	6-Bit; Slot 5.	
F3BAR+M	emory Offset 38h	Command Register (R/W)	Reset Value = 00
	emory Offset 39h	SMI Status Register (RC)	Reset Value = 00
	emory Offset 3Ah-3Bh	Reserved	Reset Value = xx
	emory Offset 3Ch-3Fh	PRD Table Address (R/W)	Reset Value = 00000000
FJDARTIN	emory onset son-sen	FRD Table Address (R/W)	Reset value = 0000000
Refer to Ta	ble 3-63 for bit descriptions.		
Note: Bit	3 of the Command Register must	be set to 1 (memory write) for correct operation.	
Audio Bus	Master 4: Output to Codec; 16	-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[1	9] selects slot).
F3BAR+M	emory Offset 40h	Command Register (R/W)	Reset Value = 00
	emory Offset 41h	SMI Status Register (RC)	Reset Value = 00
	emory Offset 42h-43h	Reserved	Reset Value = xx
	emory Offset 44h-47h	PRD Table Address (R/W)	Reset Value = 00000000
FJDAR+IVI	emory Onset 441-471	PRD Table Address (R/W)	
Refer to Ta	ble 3-63 on page 117 for bit desc	riptions.	
Note: Bit	3 of the Command Register must	be set to 0 (memory read) for correct operation.	
Audio Bus	Master 5: Input from Codec; 1	6-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).
	emory Offset 48h	Command Register (R/W)	Reset Value = 00
F3BAR+M	•	SMI Status Register (RC)	Reset Value = 00
		- · · ·	Reset Value = xx
F3BAR+M	-	Reserved	
F3BAR+M F3BAR+M	emory Offset 4Ah-4Bh	Reserved PRD Table Address (R/W)	
F3BAR+M F3BAR+M F3BAR+M	emory Offset 4Ah-4Bh emory Offset 4Ch-4Fh	PRD Table Address (R/W)	Reset Value = 00000000
F3BAR+M F3BAR+M F3BAR+M	emory Offset 4Ah-4Bh	PRD Table Address (R/W)	

3.7.1.2 Physical Region Descriptor Table Address

Before the bus master starts a master transfer it must be programmed with a pointer (PRD Table Address Register) to a Physical Region Descriptor Table. This pointer sets the starting memory location of the Physical Region Descriptors (PRDs). The PRDs describe the areas of memory that are used in the data transfer. The descriptor table entries must be aligned on a 4-byte boundary and the table cannot cross a 64 KB boundary in memory.

3.7.1.3 Physical Region Descriptor Format

Each physical memory region to be transferred is described by a Physical Region Descriptor (PRD) as illustrated in Table 3-65. When the bus master is enabled (Command Register bit 0 = 1), data transfer proceeds until each PRD in the PRD table has been transferred. The bus master does not cache PRDs.

The PRD table consists of two DWORDs. The first DWORD contains a 32-bit pointer to a buffer to be transferred. The second DWORD contains the size (16 bits) of the buffer and flags (EOT, EOP, JMP). The description of the flags are as follows:

- EOT bit If set in a PRD, this bit indicates the last entry in the PRD table (bit 31). The last entry in a PRD table must have either the EOT bit or the JMP bit set. A PRD can not have both the JMP and EOT bits set.
- EOP bit If set in a PRD and the bus master has completed the PRD's transfer, the End of Page bit is set (Status Register bit 0 = 1) and an SMI is generated. If a second EOP is reached due to the completion of another PRD before the End of Page bit is cleared, the Bus Master Error bit is set (Status Register bit 1 = 1) and the bus master pauses. In this paused condition, reading the Status Register clears both the Bus Master Error and the End of Page bits and the bus master continues.
- JMP bit This PRD is special. If set, the Memory Region Physical Base Address is now the target address of the JMP. There is no data transfer with this PRD. This PRD allows the creation of a looping mechanism. If a PRD table is created with the JMP bit set in the last PRD, the PRD table does not need a PRD with the EOT bit set. A PRD can not have both the JMP and EOT bits set.

											· · ·	,							P													
				By	te 3							Byt	te 2							Ву	te 1							By	te 0			
DWORD	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0									Me	emoi	ry R	egio	n B	ase	Add	ress	5 [31	:1] (Aud	lio D	Data	Buf	fer)		•							0
1	E O T	E O P	J M P						Re	serv	/ed												Siz	e [1	5:1]							0

Table 3-65. Physical Region Descriptor Format

3.7.1.4 Programming Model

The following discussion explains, in steps, how to initiate and maintain a bus master transfer between memory and an audio slave device.

In the steps listed below, the reference to "Example" refers to Figure 3-20, PRD Table Example.

 Software creates a PRD table in system memory. Each PRD entry is 8 bytes long; consisting of a base address pointer and buffer size. The maximum data that can be transferred from a PRD entry is 64 KB. A PRD table must be aligned on a 4-byte boundary. The last PRD in a PRD table must have the EOT or JMP bit set.

Example - Assume the data is outbound. There are three PRDs in the example PRD table. The first two PRDs (PRD_1, PRD_2) have only the EOP bit set. The last PRD (PRD_3) has only the JMP bit set. This example creates a PRD loop.

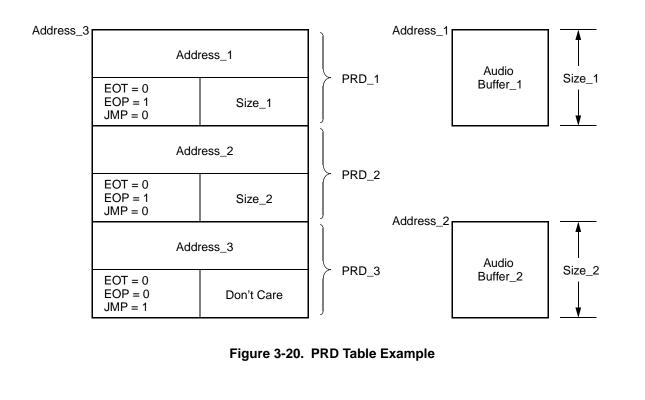
2) Software loads the starting address of the PRD table by programming the PRD Table Address Register.

Example - Program the PRD Table Address Register with Address_3.

3) Software must fill the buffers pointed to by the PRDs with audio data. It is not absolutely necessary to fill the buffers; however, the buffer filling process must stay ahead of the buffer emptying. The simplest way to do

this is by using the EOP flags to generate an SMI when a PRD is empty.

Example - Fill Audio Buffer_1 and Audio Buffer_2. The SMI generated by the EOP from the first PRD allows the software to refill Audio Buffer_1. The second SMI will refill Audio Buffer_2. The third SMI will refill Audio Buffer_1 and so on.


4) Read the SMI Status Register to clear the Bus Master Error and End of Page bits (bits 1 and 0).

Set the correct direction to the Read or Write Control bit (Command Register bit 3). Note that the direction of the data transfer of a particular bus master is fixed and therefore the direction bit must be programmed accordingly. It is assumed that the codec has been properly programmed to receive the audio data.

Engage the bus master by writing a "1" to the Bus Master Control bit (Command Register bit 0).

The bus master reads the PRD entry pointed to by the PRD Table Address Register and increments the address by 08h to point to the next PRD. The transfer begins.

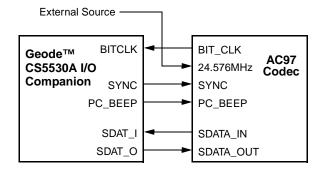
Example - The bus master is now properly programmed to transfer Audio Buffer_1 to a specific slot(s) in the AC97 interface.

5) The bus master transfers data to/from memory responding to bus master requests from the AC97 interface. At the completion of each PRD, the bus master's next response depends on the settings of the flags in the PRD.

Example - At the completion of PRD_1 an SMI is generated because the EOP bit is set while the bus master continues on to PRD_2. The address in the PRD Table Address Register is incremented by 08h and is now pointing to PRD_3. The SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_1 is now empty, the software can refill it.

At the completion of PRD_2 an SMI is generated because the EOP bit is set. The bus master then continues on to PRD_3. The address in the PRD Table Address Register is incremented by 08h. The DMA SMI Status Register is read to clear the End of Page status flag. Since Audio Buffer_2 is now empty, the software can refill it. Audio Buffer_1 has been refilled from the previous SMI.

PRD_3 has the JMP bit set. This means the bus master uses the address stored in PRD_3 (Address_3) to locate the next PRD. It does not use the address in the PRD Table Address Register to get the next PRD. Since Address_3 is the location of PRD_1, the bus master has looped the PRD table.


Stopping the bus master can be accomplished by not reading the SMI Status Register End of Page status flag. This leads to a second EOP which causes a Bus Master Error and pauses the bus master. In effect, once a bus master has been enabled it never needs to be disabled, just paused. The bus master cannot be disabled unless the bus master has been paused or has reached an EOT.

3.7.1.5 AC97 Codec Interface

The CS5530A provides an AC97 Specification Revision 1.3, 2.0, and 2.1 compatible interface. Any AC97 codec which supports sample rate conversion (SRC) can be used with the CS5530A. This type of codec allows for a design which meets the requirements for PC97 and PC98-compliant audio as defined by Microsoft Corporation.

The AC97 codec (e.g., National's LM4548) is the master of the serial interface and generates the clocks to CS5530A, Figure 3-21 shows the codec and CS5530A signal connections. For specifications on the serial interface, refer to the appropriate codec manufacturer's data sheet.

For PC speaker synthesis, the CS5530A outputs the PC speaker signal on the PC_BEEP pin which is connected to the PC_BEEP input of the AC97 codec.

Figure 3-21. AC97 Signal Connections

Codec Configuration/Control Registers

The codec related registers consist of four 32-bit registers:

- Codec GPIO Status Register
- Codec GPIO Control Register
- Codec Status Register
- Codec Command Register

Codec GPIO Status and Control Registers (F3BAR+ Memory Offset 00h and 04h)

The Codec GPIO Status and Control Registers are used for codec GPIO related tasks such as enabling a codec GPIO interrupt to cause an SMI.

Codec Status Register (F3BAR+Memory Offset 08h)

The Codec Status Register stores the codec status word. It updates every valid Status Word slot.

Codec Control Register (F3BAR+Memory Offset 0Ch)

The Codec Control Register writes the control word to the codec. By writing the appropriate control words to this port, the features of the codec can be controlled. The contents of this register are written to the codec during the Control Word slot.

The bit formats for these registers are given in Table 3-66.

Table 3-66. Codec Configuration/Control Registers

Bit	Description		
F3BAR+N	lemory Offset 00h-03h	Codec GPIO Status Register (R/W)	Reset Value = 00100000h
31	Codec GPIO Interface: 0 = 0	Disable; 1 = Enable.	
30	Codec GPIO SMI: Allow code	ec GPIO interrupt to generate an SMI. 0 = Disable; 1=	Enable.
		ed at F1BAR+Memory Offset 00h/02h[1].	
		ported at F3BAR+Memory Offset 10h/12h[1].	
29:21	Reserved: Set to 0.		
20		ead Only): Is the status read valid? 0 = Yes; 1 = No.	
19:0	Codec GPIO Pin Status (Re signal.	ad Only): This is the GPIO pin status that is received f	rom the codec in slot 12 on SDATA_IN
F3BAR+N	lemory Offset 04h-07h	Codec GPIO Control Register (R/W)	Reset Value = 00000000h
31:20	Reserved: Set to 0.		
19:0	Codec GPIO Pin Data: This	is the GPIO pin data that is sent to the codec in slot 12	on the SDATA_OUT signal.
F3BAR+N	lemory Offset 08h-0Bh	Codec Status Register (R/W)	Reset Value = 00000000h
31:24	Codec Status Address (Rea slot 1 bits [19:12].	d Only): Address of the register for which status is bei	ng returned. This address comes from
23	Codec Serial INT SMI: Allow	codec serial interrupt to generate an SMI. 0 = Disable	; 1= Enable.
		ed at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is re	ported at F3BAR+Memory Offset 10h/12h[1].	
22	SYNC Pin: Selects SYNC pir	level. 0 = Low; 1 = High.	
21	Enable SDATA_IN2: Pin AE2	4 function selection. $0 = GPIO1$; $1 = SDATA_IN2$.	
	For this pin to function as SD	ATA_IN2, it must first be configured as an input (F0 Ind	ex 90h[1] = 0).
20	Audio Bus Master 5 AC97 S	lot Select: Selects slot for Audio Bus Master 5 to rece	ive data. $0 = $ Slot 6; $1 = $ Slot 11.
19	Audio Bus Master 4 AC97 S	Iot Select: Selects slot for Audio Bus Master 4 to trans	smit data. $0 = $ Slot 6; $1 = $ Slot 11.
18	Reserved: Set to 0.		
17	Status Tag (Read Only): Det	ermines if the status in bits [15:0] is new or not. 0 = No	ot new; 1 = New.
16	Codec Status Valid (Read C	nly): Is the status in bits [15:0] valid? $0 = No; 1 = Yes$.	
15:0	Codec Status (Read Only): [19:4] are used from slot 2.	This is the codec status data that is received from the o	codec in slot 2 on SDATA_IN. Only bits
F3BAR+N	lemory Offset 0Ch-0Fh	Codec Command Register (R/W)	Reset Value = 00000000h
31:24	Codec Command Address: in slot 1 bits [19:12] on SDATA	Address of the codec control register for which the com A_OUT.	mand is being sent. This address goes
23:22		ation: Selects which codec to communicate with.	
	00 = Primary codec	10 = Third codec	
	01 = Secondary codec	11 = Fourth codec	
04.47	Note: 00 and 01 are the only	valid settings for these bits.	
21:17	Reserved: Set to 0.		
16		ne command in bits [15:0] valid? 0 = No; 1 = Yes.	
	This hit is not be been been been been been been been	en a command is loaded. It remains set until the comn	and has been and to the sector

3.7.2 VSA Technology Support Hardware

The CS5530A I/O companion incorporates the required hardware in order to support the Virtual System Architecture (VSA) technology for capture and playback of audio using an external codec. This eliminates much of the hardware traditionally associated with industry standard audio functions.

XpressAUDIO software provides 16-bit compatible sound. This software is available to OEMs for incorporation into the system BIOS ROM.

3.7.2.1 VSA Technology

VSA technology provides a framework to enable software implementation of traditionally hardware-only components. VSA technology software executes in System Management Mode (SMM), enabling it to execute transparently to the operating system, drivers, and applications.

The VSA technology design is based upon a simple model for replacing hardware components with software. Hardware to be virtualized is merely replaced with simple access detection circuitry which asserts the SMI# (System Management Interrupt) pin when hardware accesses are detected. The current execution stream is immediately preempted, and the processor enters SMM. The SMM system software then saves the processor state, initializes the VSA technology execution environment, decodes the SMI source and dispatches handler routines which have registered requests to service the decoded SMI source. Once all handler routines have completed, the processor state is restored and normal execution resumes. In this manner, hardware accesses are transparently replaced with the execution of SMM handler software.

Historically, SMM software was used primarily for the single purpose of facilitating active power management for notebook designs. That software's only function was to manage the power up and down of devices to save power. With high performance processors now available, it is feasible to implement, primarily in SMM software, PC capabilities traditionally provided by hardware. In contrast to power management code, this virtualization software generally has strict performance requirements to prevent application performance from being significantly impacted.

3.7.2.2 Audio SMI Related Registers

The SMI related registers consist of:

- Second Level Audio SMI Status Registers
- I/O Trap SMI and Fast Write Status Register
- I/O Trap SMI Enable Register

The Top SMI Status Mirror and Status Registers are the top level of hierarchy for the SMI handler in determining the source of an SMI. These two registers are at F1BAR+Memory Offset 00h (Status Mirror) and F1BAR+Memory Offset 02h (Status). The registers are identical except that reading the register at F1BAR+Memory Offset 02h clears the status.

Second Level Audio SMI Status Registers

The second level of audio SMI status reporting is set up very much like the top level. There are two status reporting registers, one "read only" (mirror) and one "read to clear". The data returned by reading either offset is the same (i.e., SMI was caused by an audio related event). The difference between F3BAR+Memory Offset 12h and 10h (mirror) is in the ability to clear the SMI source at 10h.

Figure 3-22 shows an SMI tree for checking and clearing the source of an audio SMI. Only the audio SMI bit is detailed here. For details regarding the remaining bits in the Top SMI Status Mirror and Status Registers refer to Table 4-17 "F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers" on page 183.

I/O Trap SMI and Fast Write Status Register

This 32-bit read-only register (F3BAR+Memory Offset 14h) not only indicates if the enabled I/O trap generated an SMI, but also contains Fast Path Write related bits.

I/O Trap SMI Enable Register

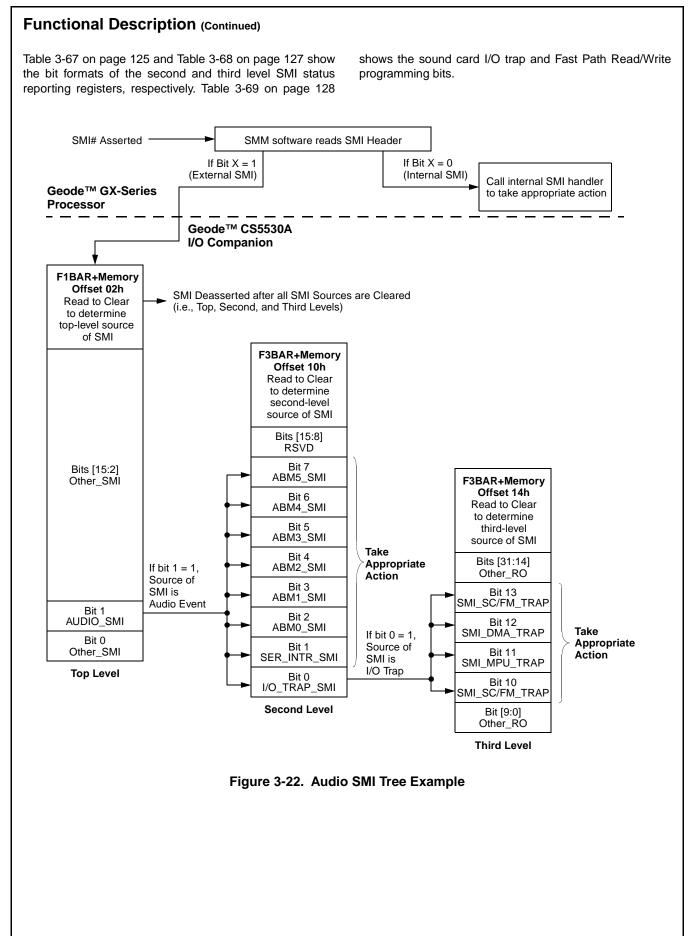
The I/O Trap SMI Enable Register (F3BAR+Memory Offset 18h) allows traps for specified I/O addresses and configures generation for I/O events. It also contains the enabling bit for Fast Path Write/Read features.

If Status Fast Path Read is enabled, the CS5530A intercepts and responds to reads to several status registers. This speeds up operations, and prevents SMI generation for reads to these registers. Status Fast Path Read is enabled via F3BAR+Memory Offset 18h[4].

In Status Fast Path Read the CS5530A responds to reads of the following addresses:

388h-38Bh

2x0h, 2x1h, 2x2h, 2x3h, 2x8h, and 2x9h


Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping is not possible.

If Fast Path Write is enabled, the CS5530A captures certain writes to several I/O locations. This feature prevents two SMIs from being asserted for write operations that are known to take two accesses (the first access is an index and the second is data). Fast Path Write is enabled via F3BAR+Memory Offset 18h[11].

Fast Path Write captures the data and address bit 1 (A1) of the first access, but does not generate an SMI. A1 is stored in F3BAR+Memory Offset 14h[15]. The second access causes an SMI, and the data and address are captured as in a normal trapped I/O.

In Fast Path Write, the CS5530A responds to writes to the following addresses:

388h, 38Ah, and 38Bh 2x0h, 2x2h, and 2x8h

Geode[™] CS5530A

Functional Description (Continued)

Table 3-67.	Second	Level SMI	Status	Reporting	Registers
-------------	--------	-----------	--------	-----------	-----------

Bit	Description				
F3BAR+N	Iemory Offset 10h-11h Second Level Audio SMI Status Register (RC)	Reset Value = 0000h			
15:8	Reserved: Set to 0.				
7	Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C				
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	g on Audio Bus Master 4?			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C				
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	g on Audio Bus Master 3?			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C	. ,			
4	Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	g on Audio Bus Master 2?			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C	. ,			
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	g on Audio Bus Master 1?			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem				
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C	. ,			
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurrin 0 = No; 1 = Yes.	g on Audio Bus Master 0?			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory C	/			
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a seri 0 = No; 1 = Yes.	al or GPIO interrupt from codec			
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Mem	ory Offset 00h/02h[1].			
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.				
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The next level (third level) of SMI status r Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].	reporting is at F3BAR+Memory			
Note: Re	ading this register clears the status bits. Note that bit 0 has another level (third) of SMI statu	s reporting.			
	ead-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value of aring the SMI source (and consequently deasserting SMI), the Mirror register may be read in	•			

Bit	Description				
F3BAR+Memory Offset 12h-13h Second Level Audio SMI Status Mirror Register (RO) Reset Value = 0000h					
15:8	Reserved: Set to 0.				
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 5? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 49h[0] = 1).				
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 4? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 41h[0] = 1).				
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 3? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 39h[0] = 1).				
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 2? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 31h[0] = 1).				
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 1? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 29h[0] = 1).				
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Audio Bus Master 0? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h[0] = 1). An SMI is then generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset 21h[0] = 1).				
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GPIO interrupt from codec? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.				
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.				
	This is the second level of SMI status reporting. The next level (third level) of SMI status reporting is at F3BAR+Memory Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].				
	ading this register does not clear the status bits. See F3BAR+Memory Offset 10h.				

GeodeTM CS5530A

Geode[™] CS5530A

Functional Description (Continued)

Table 3-68.	Third Level	SMI Status	Reporting	Registers
-------------	-------------	------------	-----------	-----------

3BAR+M	emory Offset 14h-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h			
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.			
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.			
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.			
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.			
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)			
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.			
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].			
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].			
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note)			
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].			
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].			
	SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].			
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap? 0 = No; 1 = Yes. (Note)			
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].			
	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].			
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)			
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write i enabled, the SMI is reported in bit 13 of this register.			
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0].			
	The top level is reported at F1BAR+Memory Offset 00h/02h[1].			
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].			
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.			
	the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the			
DM	A, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.			

Table 3-69. Sound Card I/O Trap and Fast Path Enable Registers

Bit	Description				
F3BAR+Memory Offset 18h-19h I/O Trap SMI Enable Register (R/W) Reset Value = 0000h					
15:12	Reserved: Set to 0.				
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certa 0 = Disable; 1 = Enable.	in writes to specified addresses).			
	In Fast Path Write, the CS5530A responds to writes to the following address 2x8h.	ses: 388h, 38Ah and 38Bh; 2x0h, 2x2h, and			
10:9	Fast Read: These two bits hold part of the response that the CS5530A retu	rns for reads to several I/O locations.			
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.				
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is g	enerated.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[12].				
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.				
	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is ge	nerated.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[12].				
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.				
	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SM	/II is generated.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[11].				
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.				
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SM	/II is generated.			
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[11].				
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not gener 0 = Disable; 1 = Enable.	ated on reads from specified addresses).			
	In Fast Path Read the CS5530A responds to reads of the following address and 2x9h.	es: 388h-38Bh; 2x0h, 2x1h, 2x2h, 2x3h, 2x8h			
	Note that if neither sound card nor FM I/O mapping is enabled, then status r	read trapping is not possible.			
3	FM I/O Trap: 0 = Disable; 1 = Enable.				
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated.				
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].				
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable				
	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], an SMI is generated.				
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[10].				
1:0	Sound Card Address Range Select: These bits select the address range	for the sound card I/O trap.			
	00 = I/O Port 220h-22Fh 10 = I/O Port 260h-26Fh 01 = I/O Port 240h-24Fh 11 = I/O Port 280h-28Fh				

3.7.2.3 IRQ Configuration Registers

The CS5530A provides the ability to set and clear IRQs internally through software control. If the IRQs are configured for software control, they will not respond to external hardware. There are three registers provided for this feature:

- Internal IRQ Enable Register
- Internal IRQ Mask Register
- Internal IRQ Control Register

Internal IRQ Enable Register

This register configures the IRQs as internal (software) interrupts or external (hardware) interrupts. Any IRQ used as an internal software driven source must be configured as internal.

Internal IRQ Mask Register

Each bit in the Mask register individually disables the corresponding bit in the Control Register.

Internal IRQ Control Register

This register allows individual software assertion/deassertion of the IRQs that are enabled as internal and unmasked.

The bit formats for these registers are given in Table 3-70.

	Table 3-70. IRQ Configuration Registers		
Bit	Description		
F3BAR+	Memory Offset 1Ah-1Bh Internal IRQ Enable Register (R/W)	Reset Value = 0000ł	
15	IRQ15 Internal: Configure IRQ15 for internal (software) or external (hardware) use. 0 = Ex	ternal; 1 = Internal.	
14	IRQ14 Internal: Configure IRQ14 for internal (software) or external (hardware) use. 0 = Ex	ternal; 1 = Internal.	
13	Reserved: Set to 0.		
12	IRQ12 Internal: Configure IRQ12 for internal (software) or external (hardware) use. 0 = Ex	ternal; 1 = Internal.	
11	IRQ11 Internal: Configure IRQ11 for internal (software) or external (hardware) use. 0 = Ex	ternal; 1 = Internal.	
10	IRQ10 Internal: Configure IRQ10 for internal (software) or external (hardware) use. 0 = Ex	ternal; 1 = Internal.	
9	IRQ9 Internal: Configure IRQ9 for internal (software) or external (hardware) use. 0 = Exter	nal; 1 = Internal.	
8	Reserved: Set to 0.		
7	IRQ7 Internal: Configure IRQ7 for internal (software) or external (hardware) use. 0 = Exter	nal; 1 = Internal.	
6	Reserved: Set to 0.		
5	IRQ5 Internal: Configure IRQ5 for internal (software) or external (hardware) use. 0 = Exter	nal; 1 = Internal.	
4	IRQ4 Internal: Configure IRQ4 for internal (software) or external (hardware) use. 0 = External; 1 = Internal.		
3	IRQ3 Internal: Configure IRQ3 for internal (software) or external (hardware) use. 0 = External; 1 = Internal.		
2:0	Reserved: Set to 0.		
Note: M	ust be read and written as a WORD.		
F3BAR+	Memory Offset 1Ch-1Dh Internal IRQ Control Register (R/W)	Reset Value = 0000	
15	Assert Masked Internal IRQ15: 0 = Disable; 1 = Enable.		
14	Assert Masked Internal IRQ14: 0 = Disable; 1 = Enable.		
13	Reserved: Set to 0.		
12	Assert Masked Internal IRQ12: 0 = Disable; 1 = Enable.		
11	Assert masked internal IRQ11: 0 = Disable; 1 = Enable.		
10	Assert Masked Internal IRQ10: 0 = Disable; 1 = Enable.		
9	Assert Masked Internal IRQ9: 0 = Disable; 1 = Enable.		
8	Reserved: Set to 0.		
7	Assert Masked Internal IRQ7: 0 = Disable; 1 = Enable.		
6	Reserved: Set to 0.		
5	Assert Masked Internal IRQ5: 0 = Disable; 1 = Enable.		

Table 3-70. IRQ Configuration Registers (Continued)

		54)		
Bit	Description			
3	Assert Masked Internal IRQ3: 0 = Disable; 1 = Enable.			
2:0	Reserved: Set to 0.			
F3BAR+I	Iemory Offset 1Eh-1Fh Internal IRQ Mask Register (Write Only)	Reset Value = xxxxh		
15	Mask Internal IRQ15: 0 = Disable; 1 = Enable.			
14	Mask Internal IRQ14: 0 = Disable; 1 = Enable.	Mask Internal IRQ14: 0 = Disable; 1 = Enable.		
13	Reserved: Set to 0.			
12	Mask Internal IRQ12: 0 = Disable; 1 = Enable.			
11	Mask Internal IRQ11: 0 = Disable; 1 = Enable.			
10	Mask Internal IRQ10: 0 = Disable; 1 = Enable.			
9	Mask Internal IRQ9: 0 = Disable; 1 = Enable.			
8	Reserved: Set to 0.			
7	Mask Internal IRQ7: 0 = Disable; 1 = Enable.			
6	Reserved: Set to 0.			
5	Mask Internal IRQ5: 0 = Disable; 1 = Enable.			
4	Mask Internal IRQ4: 0 = Disable; 1 = Enable.			
3	Mask Internal IRQ3: 0 = Disable; 1 = Enable.			
2:0	Reserved: Set to 0.			

3.8 DISPLAY SUBSYSTEM EXTENSIONS

The CS5530A incorporates extensions to the GX-series processors' display subsystem. These include:

- Video Interface Configuration Registers
- Line Buffers
- Video Port Protocol
- Video Format
- X and Y Scaler / Filter
- Color-Space-Converter
- Video Accelerator
- Gamma RAM .
- **Display Interface**
 - Video DACs
 - VESA DDC2B / DPMS
 - Flat Panel Support

Figure 3-23 shows the data path of the display subsystem extensions.

3.8.1 Video Interface Configuration Registers

Registers for configuring the video interface are accessed through F4 Index 10h, the Base Address Register (F4BAR) in Function 4. F4BAR sets the base address for the Video Interface Configuration Registers as shown in Table 3-71.

Note: All Video Interface Configuration Registers have a 32-bit access granularity (only).

The following subsections describe the video interface and the registers used for programming purposes. However, for complete bit information refer to Section 4.3.5 "Video Controller Registers - Function 4" on page 203.

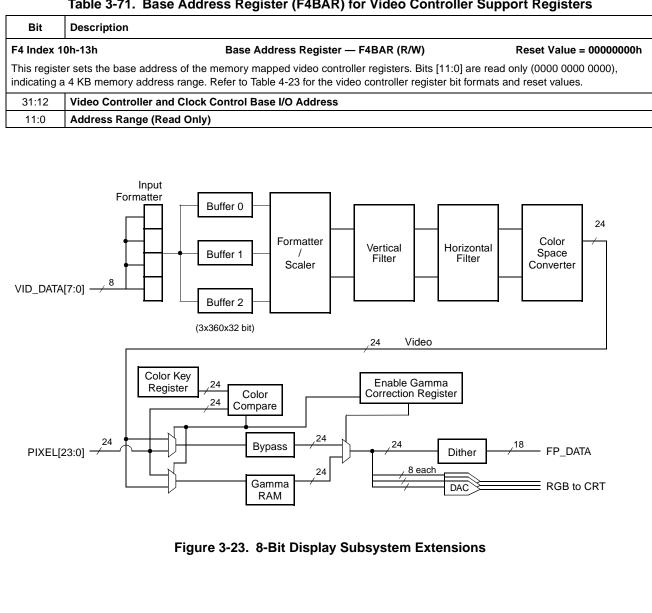


Table 3-71. Base Address Register (F4BAR) for Video Controller Support Registers

3.8.2 Video Accelerator

The CS5530A off-loads the processor from several computing-intensive tasks related to the playback of full motion video. By incorporating this level of hardware-assist, a CS5530A/GX-series processor based system can sustain 30 frames-per-second of MPEG quality video.

3.8.2.1 Line Buffers

The CS5530A accepts an 8-bit video stream from the processor and provides three full MPEG resolution line buffers (3x360x32-bit). MPEG source horizontal resolutions up to 720 pixels are supported. By having three line buffers, the display pipeline can read from two lines while the next line of data is being loaded from the processor. This minimizes memory bandwidth utilization by requiring that a source line be transferred only once per frame. Peak bandwidth is also reduced by requiring that the video source line be transferred within the horizontal line time rather than forcing the transfer to occur during the active video window. This efficient utilization of memory bandwidth allows the processor and graphics accelerator an increased opportunity to access the memory subsystem and improves overall system performance during video playback.

3.8.2.2 Video Port Protocol

The video port operates at one-half the processor's core clock rate and utilizes a two-wire handshake protocol. The VID_VAL input signal indicates that valid data has been placed on the VID_DATA[7:0] bus. When the CS5530A is ready to accept data, it asserts VID_RDY to indicate that a line buffer is free to accept the next line. When both VID_VAL and VID_RDY are asserted, VID_DATA advances.

The VID_RDY signal is driven by the CS5530A one clock early to the processor while the VID_VAL signal is driven by the processor coincident with valid data on VID_DATA. A sample timing diagram is shown in Figure 3-24.

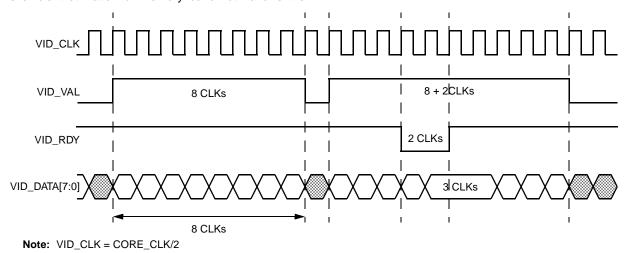


Figure 3-24. Video Port Protocol

3.8.2.3 Video Format

The video input data can be in interleaved YUV 4:2:2 or RGB 5:6:5 format. The sequence of the individual YUV components is selectable to one of four formats via bits

[3:2] in the Video Configuration Register (F4BAR+Memory Offset 00h[3:2]). The decode for these bits is shown in Table 3-72.

Table 3-72.	Video	Input	Format	Bits
	VIGCO	mput	i onnat	Dito

Bit	Description				
F4BAR+N	lemory Offset 00h-03h V	ideo Configuration Register (R/W)	Reset Value = 00000000h		
31	Reserved: Set to 0				
30	High Speed Timing for Video Interface: High speed timings for the video interface. 0 = Disable; 1= Enable.				
	If bit 30 is enabled, bit 25 should be set to 0.				
29	16-bit Video Interface: Allow video interface to be 16 bits. 0 = Disable; 1= Enable.				
	If bit 29 is enabled, 8 bits of pixel dat	a is used for video. The 24-bit pixel data is then	dithered to 16 bits.		
	Note: F4BAR+Memory Offset 04h[2	5] should be set to the same value as this bit (b	bit 29).		
28	YUV 4:2:2 or 4:2:0 Mode: 0 = 4:2:2	mode; 1= 4:2:0 mode.			
	If 4:2:0 mode is selected, bits [3:2] sl	hould be set to 01 for 8-bit video mode and 10 f	or 16-bit video mode.		
	Note: The GX-series processor does not support 4:2:0 mode.				
27	Video Line Size (DWORDs): This is	the MSB of the Video Line Size (DWORDs). Se	ee bits [15:8] for description.		
26	Reserved: Set to 0				
25	Early Video Ready: Generate VID_RDY output signal one-half VID_CLK period early to improve the speed of the video port operation. 0 = Disable; 1 = Enable.				
	If bit 30 is enabled, this bit (bit 25) should be set to 0.				
24		the MSB of the Initial Buffer Read Address. Se			
23:16	Initial Buffer Read Address: This field is used to preload the starting read address for the line buffers at the beginning of each display line. It is used for hardware clipping of the video window at the left edge of the active display. It represents the DWORD address of the source pixel which is to be displayed first. For an unclipped window, this value should be 0.				
15:8	Video Line Size (DWORDs): This field represents the horizontal size of the source video data in DWORDs.				
7	Y Filter Enable: Vertical filter. 0 = Disable; 1= Enable.				
6	X Filter Enable: Horizontal filter. 0 = Disable; 1 = Enable.				
5	CSC Bypass: Allows color-space-converter to be bypassed. Primarily used for displaying an RGB graphics overlay rather than a YUV video overlay. 0 = Overlay data passes through CSC; 1 = Overlay data bypasses CSC.				
4	GV Select: Selects whether graphics or video data will be passed through the scaler hardware. 0 = Video data; 1 = Graphics data.				
3:2	Video Input Format: This field defin	es the byte ordering of the video data on the VI	D_DATA bus.		
	8-Bit Mode (Value Byte Order [0:3]) 16-Bit Mode (Value B	yte Order [0:3])		
	00 = U Y0 V Y1 (also used for RGB		used for RGB 5:6:5 input)		
	01 = Y1 V Y0 U or 4:2:0	01 = Y0 U Y1 V	0		
	10 = Y0 U Y1 V 11 = Y0 V Y1 U	10 = Y1 V Y0 U or 4:2: 11 = Reserved	:0		
			mode and 10 for 16-bit video mode.		
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) should be set to 01 for 8-bit video mode and 10 for 16-bit video mode. Note: $U = Cb$, $V = Cr$				
1	,	position and scale registers to be updated sim	ultaneously on next occurrence of		
0	Video Enable: Video acceleration ha	ardware. 0 = Disable; 1 = Enable.			

3.8.2.4 X and Y Scaler / Filter

The CS5530A supports horizontal and vertical scaling of the video stream up to eight times the source resolution. The scaler uses a Digital-Differential-Analyzer (DDA) based upon the values programmed in the Video Scale Register (F4BAR+Memory Offset 10h, see Table 3-73)

The scaled video stream is then passed through horizontal and vertical filters which perform a 2-tap, 8-phase bilinear filter on the resulting stream. The filtering function removes the "blockiness" of the scaled video thereby significantly improving the quality of the displayed image.

By performing the scaling and filtering function in hardware, video performance is substantially improved over pure software implementations by requiring that the decompression software only output the video stream at the native source resolution. This saves both processor overhead and memory bandwidth.

3.8.2.5 Color-Space-Converter

After scaling and filtering have been applied, the YUV video data is passed through the color-space converter to obtain 24-bit RGB video data. The color-space conversion equations are based on the CCIR Recommendation 601-1 as follows:

 $\begin{array}{l} \mathsf{R} = 1.164(\mathsf{Y}{-}16) + 1.596(\mathsf{V}{-}128) \\ \mathsf{G} = 1.164(\mathsf{Y}{-}16) - 0.813(\mathsf{V}{-}128) - 0.391(\mathsf{U}{-}128) \\ \mathsf{B} = 1.164(\mathsf{Y}{-}16) + 2.018(\mathsf{U}{-}128) \end{array}$

The color-space converter clamps inputs to acceptable limits if the data is not well behaved. The color-space converter is bypassed for overlaying 16 bpp RGB graphics data.

Bit	Description	
F4BAR+N	Iemory Offset 10h-13h Video Scale Register (R/W)	Reset Value = xxxxxxxh
31:30	Reserved: Set to 0.	
29:16	Video Y Scale Factor: This field represents the video window vertical scal formula. VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1) Where: Ys = Video source vertical size in lines Yd = Video destination vertical size in lines	le factor according to the following
15:14	Reserved: Set to 0.	
13:0	Video X Scale Factor: This field represents the video window horizontal s formula.	cale factor according to the following
	VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1)	
	Where:	
	Xs = Video source horizontal size in pixels	
	Xd = Video destination horizontal size in pixels	

Table 3-73. Video Scale Register

3.8.3 Video Overlay

The video data from the color-space converter is then mixed with the graphics data based upon the video window position. The video window position is programmable via the Video X and Y Position Registers (F4BAR+Memory Offset 08h and 0Ch). A color-keying mechanism is employed to compare either the source (video) or destination (graphics) color to the color key programmed via the Video Color Key Register (FBAR+Offset 14h) and to select the appropriate pixel for display within the video window. The range of the color key is programmable by setting the appropriate bits in the Video Color Mask Register (F4BAR+Memory Offset 18h). This mechanism greatly

reduces the software overhead for computing visible pixels, and ensures that the video display window may be partially occluded by overlapping graphics data. Tables 3-74 and 3-75 show the bit formats for these registers

The CS5530A accepts graphics data over the PIXEL[23:0] interface from the GX-series processor at the screen DOT clock rate. The CS5530A is capable of displaying graphics resolutions up to 1600x1200 at color depths up to 24 bits per pixel (bpp) while simultaneously overlaying a video window. However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings.

Table 3-74. Video X and Y Position Registers

Bit	Description							
F4BAR+Memory Offset 08h-0Bh Video X Register (R/W) Reset Value = xxxxxxxh								
31:27	Reserved: Set to 0.							
26:16		eld represents the horizontal end position of the vi = screen position + (H_TOTAL – H_SYNC_END)	• •					
15:11	Reserved: Set to 0.							
10:0		eld represents the horizontal start position of the = screen position + (H_TOTAL – H_SYNC_END)	a a					
F4BAR+N	lemory Offset 0Ch-0Fh	Video Y Register (R/W)	Reset Value = xxxxxxxh					
31:27	Reserved: Set to 0.							
26:16		ld represents the vertical end position of the video position + (V_TOTAL – V_SYNC_END) + 1.	window according to the following formula.					
15:11	Reserved: Set to 0.							
		eld represents the vertical start position of the vid	too window opporting to the following					

Table 3-75. Video Color Registers

Bit	Description							
F4BAR+Memory Offset 14h-17h Video Color Key Register (R/W) Reset Value = xxxxxxxh								
31:24	Reserved: Set to 0.							
23:0		represents the video color key. It is a 24-bit RGB value rior to the compare by programming the Video Color M	5 1 5					
	18h) appropriately.	nor to the compare by programming the video Color M						
F4BAR+M	, , ,	Video Color Mask Register (R/W)	Reset Value = xxxxxxxh					
F4BAR+N 31:24	18h) appropriately.							

3.8.4 Gamma RAM

Either the graphics or video stream may be routed through an on-chip gamma RAM (3x256x8-bit) which can be used for gamma-correction of either data stream, or contrast/brightness adjustments in the case of video data.

A bypass path is provided for either the graphics or video stream (depending on which is sent through the gamma

RAM). The two streams are merged based on the results of the color key compare.

Configuration for this feature and the display interface are through the Display Configuration Register (F4BAR+Memory Offset 04h). Table 3-76 shows the bit formats for this register.

Table 3-76. Display Configuration Register

Bit	Description	
F4BAR+M	lemory Offset 04h-07h Display Configuration Register (R/W)	Reset Value = 00000000h
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.	
30:28	Reserved: Set to 0.	
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel dis tions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.	play is powered on or off. The bit transi-
26	Reserved: Set to 0.	
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface This bit should be set to the same value as the 16-bit Video Interface bit.	ace bit at F4BAR+Memory Offset 00h[29]
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write da 1 = DDC_SDA (pin M4) is an output.	ata. 0 = DDC_SDA (pin M4) is an input;
23	DDC Output Data: This is the DDC data bit.	
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.	
21	Palette Bypass: Selects whether graphics or video data should bypass the gamm 0 = Video data; 1 = Graphics data.	na RAM.
20	Video/Graphics Color Key Select: Selects whether the video or graphics data str 0 = Graphics data is compared to color key; 1 = Video data is compared to color k	
19:17	Power Sequence Delay: This field selects the number of frame periods that trans power sequence control lines. Valid values are 001 to 111.	pire between successive transitions of the
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew th sent to the CRT. This field should be programmed to 100 as the baseline. The syn ative to the pixel data via this register. It is used to compensate for the pipeline de	cs may be moved forward or backward re
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp 18-bit flat panel display. 0 = Disable; 1 = Enable.	display data to be approximated with an
12	XGA Flat Panel: This bit enables the FP_CLK_EVEN output signal which can be even and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.	used to demultiplex the FP_DATA bus inte
11	Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync 0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval.	c polarity.
10	Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizonta 0 = FP horizontal sync is normally low, transitioning high during sync interval. 1 = FP horizontal sync is normally high, transitioning low during sync interval.	al sync polarity.
9	 CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity. 0 = CRT vertical sync is normally low, transitioning high during sync interval. 1 = CRT vertical sync is normally high, transitioning low during sync interval. 	
8	CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync pola 0 = CRT horizontal sync is normally low, transitioning high during sync interval. 1 = CRT horizontal sync is normally high, transitioning low during sync interval.	arity.
7	Flat Panel Data Enable: Enables the flat panel data bus. 0 = FP_DATA [17:0] is forced low; 1 = FP_DATA [17:0] is driven based upon power sequence control.	
6	Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up 0 -> 1 = Power-up flat panel; 1 -> 0 = Power-down flat panel.	or power-down sequence.
5	DAC Power-Down (active low): This bit must be set to power-up the video DACs video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powere	•
4	Reserved: Set to 0.	

Table 3-76.	Display	Configuration	Register	(Continued)
-------------	---------	---------------	----------	-------------

Bit	Description
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display control logic. 0 = Reset display control logic; 1 = Enable display control logic.

3.8.5 Display Interface

The CS5530A interfaces directly to a variety of display devices including conventional analog CRT displays, TFT flat panels, the National's Geode CS9211 graphics companion (a flat panel display controller), or optionally to digital NTSC/PAL encoder devices.

3.8.5.1 Video DACs

The CS5530A incorporates three 8-bit video Digital-to-Analog Converters (DACs) for interfacing directly to CRT displays. The video DACs meet the VESA specification and are capable of operation up to 157.5 MHz for supporting up to 1280x1024 display at a 85 Hz refresh rate and are VESA compliant.

3.8.5.2 VESA DDC2B / DPMS

The CS5530A supports the VESA DDC2B and DPMS standards for enhanced monitor communications and power management support.

3.8.5.3 Flat Panel Support

The CS5530A also interfaces directly to industry standard 18-bit Active Matrix Thin-Film-Transistor (TFT) flat panels. The CS5530A includes 24-bit to 18-bit dithering logic to increase the apparent number of colors displayed on 18-bit flat panels.

In addition, the CS5530A incorporates power sequencing logic to simplify the design of a portable system.

The flat panel port of the CS5530A may optionally drive the CS9211 graphics companion device for color dual-scan display (DSTN) support. If flat panel support is not required, the flat panel output port may be used to supply digital video data to one of several types of NTSC/PAL encoder devices on the market.

Flat Panel Power-Up/Down Sequence

When the Flat Panel Power Enable bit (F4BAR+Memory Offset 04h[6]) transitions from a 0 to 1, the FP_ENA_VDD signal is enabled. This is followed by the data bus (including syncs and ENA_DISP). Finally, FP_ENA_BKL is enabled. The time between each of these successive stages is set by the value of the Power Sequence Delay bits (F4BAR+Memory Offset 04h[19:17]). The value in these bits refer to the number of graphics frames that will elapse between each successive enabling of the TFT signals. For example, if the Power Sequence Delay is set to 3h (011b), then three frame times will elapse between the time when FP ENA VDD is transitioned and the data bus is transitioned. Likewise, three frame times will elapse between the data bus getting enabled and the FP_ENA_BKL is transitioned. If the panel is being refreshed at 100 Hz, each frame lasts 1 ms. So, if the Power Sequence Delay is set to 3, 3 ms will elapse between transitions. When powering off the panel, the signals are transitioned in the opposite order (FP_ENA_BKL, data bus, FP_ENA_VDD) using the same Power Sequence Delay in the power-down sequence.

3.9 UNIVERSAL SERIAL BUS SUPPORT

The CS5530A integrates a Universal Serial Bus (USB) controller which supports two ports. The USB controller is OpenHCI compliant, a standard developed by Compaq, Microsoft, and National Semiconductor. The USB core consists of three main interface blocks: the USB PCI interface controller, the USB host controller, and the USB interface controller. Legacy keyboard and mouse controllers are also supported for DOS compatibility with those USB devices.

This document must be used along with the following public domain reference documents for a complete functional description of the USB controller:

- USB Specification Revision 1.0
- OpenHCI Specification, Revision 1.0
- PCI Specification, Version 2.1

3.9.1 USB PCI Controller

The PCI controller interfaces the host controller to the PCI bus. As a master, the PCI controller is responsible for running cycles on the PCI bus on behalf of the host controller. As a target, the PCI controller monitors the cycles on the PCI bus and determines when to respond to these cycles. The USB core is a PCI target when it decodes cycles to its internal PCI configuration registers or to its internal PCI memory mapped I/O registers.

The USB core is implemented as a unique PCI device in the CS5530A. It has its own PCI Header and Configuration space. It is a single-function device, containing only Function #0. Depending on the state of the HOLD_REQ# strap pin at reset, its PCI Device Number for Configuration accesses varies:

If HOLD_REQ# is low, it uses pin AD29 as its IDSEL input, appearing as Device #13h in a Geode system.

If HOLD_REQ# is high, it uses pin AD27 as its IDSEL input, appearing as Device #11h in a Geode system.

The USB core is also affected by some bits in registers belonging to the other (Chipset) device of the CS5530A. In particular, the USB device can be disabled through the Chipset device, F0 Index 43h[0], and its IDSEL can be remapped by changing F0 Index 44h[6] (though this also affects the Chipset device's IDSEL and is not recommended).

All registers can be accessed via 8-, 16-, or 32-bit cycles (i.e., each byte is individually selected by the byte enables). Registers marked as Reserved, and reserved bits within a register are not implemented and should not be modified. These registers are summarized in Table 3-77. For complete bit information, see Table 4-25 "USB Index xxh: USB PCI Configuration Registers" on page 210.

Table 3-77. USB PCI Configuration Registers

Туре	Name
RO	Vendor Identification
RO	Device Identification
R/W	Command Register
R/W	Status Register
RO	Device Revision ID
RO	Class Code
R/W	Cache Line Size
R/W	Latency Timer
RO	Header Type
RO	BIST Register
R/W	Base Address Register (USB BAR): Sets the base address of the memory mapped USB con- troller registers.
	Reserved
R/W	Interrupt Line Register
RO	Interrupt Pin Register
RO	Min. Grant Register
RO	Max. Latency Register
R/W	ASIC Test Mode Enable Regis- ter
R/W	ASIC Operational Mode Enable
	Reserved
	Reserved
	RO R/W R/W RO RO R/W RO RO R/W

Geode[™] CS5530A

Functional Description (Continued)

3.9.2 USB Host Controller

In the USB core is the operational control block. It is responsible for the host controller's operational states (Suspend, Disable, Enable), special USB signals (Reset, Resume), status, interrupt control, and host controller configuration.

The host controller interface registers are memory mapped registers, mapped by USB F0 Index 10h (Base Address Register). These memory mapped registers are summarized in Table 3-78. For bit definitions, refer to Table 4-26 "USB BAR+Memory Offset xxh: USB Controller Registers" on page 213.

3.9.3 USB Power Management

At this time, USB supports minimal system level power management features. The only power management feature implemented is the disabling of the USB clock generator in USB Suspend state. Additional power management features require slight modifications.

The design supports PCICLK frequencies from 0 to 33 MHz. Synchronization between the PCI and USB clock domains is frequency independent. Remote wakeup of USB is asynchronously implemented from the USB Ports to PCI INTA#.

The design needs USBCLK to be operational at all times. If it is necessary to stop the 48 MHz clock, the system design requires that the signal used to enable/disable the USB clock generators is also used to wake the 48 MHz clock source. Currently, the RemoteWakeupConnected and RemoteWakeupEnable bits in the HcControl register are not implemented.

Table 3-78. USB Controller Registers

USB BAR+		_
Memory Offset	Turne	Nome
	Туре	Name
00h-03h	R/W	HcRevision
04h-07h	R/W	HcControl
08h-0Bh	R/W	HcCommandStatus
0Ch-0Fh	R/W	HcInterruptStatus
10h-13h	R/W	HcInterruptEnable
14h-17h	R/W	HcInterruptDisable
18h-1Bh	R/W	HcHCCA
1Ch-1Fh	R/W	HcPeriodCurrentED
20h-23h	R/W	HcControlHeadED
24h-27h	R/W	HcControlCurrentED
28h-2Bh	R/W	HcBulkHeadED
2Ch-2Fh	R/W	HcBulkCurrentED
30h-33h	R/W	HcDoneHead
34h-37h	R/W	HcFmInterval
38h-3Bh	RO	HcFrameRemaining
3Ch-3Fh	RO	HcFmNumber
40h-43h	R/W	HcPeriodicStart
44h-47h	R/W	HcLSThreshold
48h-4Bh	R/W	HcRhDescriptorA
4Ch-4Fh	R/W	HcRhDescriptorB
50h-53h	R/W	HcRhStatus
54h-57h	R/W	HcRhPortStatus[1]
58h-5Bh	R/W	HcRhPortStatus[2]
5Ch-5Fh		Reserved
60h-9Fh		Reserved
100h-103h	R/W	HceControl
104h-107h	R/W	HceInput
108h-10Dh	R/W	HceOutput
10Ch-10Fh	R/W	HceStatus

4.0 Register Descriptions

The Geode CS5530A is a multi-function device. Its register space can be broadly divided into four categories in which specific types of registers are located:

- 1) Chipset Register Space (F0-F4)
- 2) USB Controller Register Space (PCIUSB)
- 3) ISA Legacy I/O Register Space (I/O Port)
- 4) V-ACPI I/O Register Space (I/O Port)

The Chipset and the USB Controller Register Spaces are accessed through the PCI interface using the PCI Type One Configuration Mechanism.

The **Chipset Register Space** of the CS5530A is comprised of five separate functions (F0-F4) each with its own register space consisting of PCI header registers and memory or I/O mapped registers.

F0: Bridge Configuration Registers

- F1: SMI Status and ACPI Timer Registers F2: IDE Controller Registers F3: XpressAUDIO Subsystem Registers
- F4: Video Controller Registers

The PCI header is a 256-byte region used for configuring a PCI device or function. The first 64 bytes are the same for all PCI devices and are predefined by the PCI specification. These registers are used to configure the PCI for the device. The rest of the 256-byte region is used to configure the device or function itself.

The **USB Controller Register Space** consists of the standard PCI header registers. The USB controller supports two ports and is OpenHCI-compliant. The **ISA Legacy I/O Register Space** contains all the legacy compatibility I/O ports that are internal, trapped, shadowed, or snooped.

The **V-ACPI I/O Register Space** contains two types of registers: Fixed Feature and General Purpose. These registers are emulated by the SMI handling code rather than existing in physical hardware. To the ACPI-compliant operating system, the SMI-base virtualization is transparent. An ACPI compliant system is one whose underlying BIOS, device drivers, chipset and peripherals conform to revision 1.0 or newer of the Advanced Control and Power Interface specification.

The CS5530A V-ACPI (Virtual ACPI) solution provides the following support:

- CPU States C1, C2
- Sleep States S1, S2, S4, S4BIOS, S5
- Embedded Controller (Optional) SCI and SWI event inputs
- General Purpose Events Fully programmable GPE0
 Event Block registers

The remaining subsections of this chapter are as follows:

- A brief discussion on how to access the registers located in the PCI Configuration Space
- Register summary
- · Detailed bit formats of all registers

4.1 PCI CONFIGURATION SPACE AND ACCESS METHODS

Configuration cycles are generated in the processor. All configuration registers in the CS5530A are accessed through the PCI interface using the PCI Type One Configuration Mechanism. This mechanism uses two DWORD I/O locations at 0CF8h and 0CFCh. The first location (0CF8h) references the Configuration Address Register. The second location (0CFCh) references the Configuration Data Register.

To access PCI configuration space, write the Configuration Address (0CF8h) Register with data that specifies the CS5530A as the device on PCI being accessed, along with the configuration register offset. On the following cycle, a

read or write to the Configuration Data Register (CDR) causes a PCI configuration cycle to the CS5530A. BYTE, WORD, or DWORD accesses are allowed to the CDR at 0CFCh, 0CFDh, 0CFEh, or 0CFFh.

The CS5530A has six configuration register sets, one for each function (F0-F4) and USB (PCIUSB). Base Address Registers (BARs) in the PCI header registers are pointers for additional I/O or memory mapped configuration registers.

Table 4-1 shows the PCI Configuration Address Register (0CF8h) and how to access the PCI header registers.

Space Mapping 00 1 (Enable) 000 0000 xxxx x (Note) xxx xxxx xx 00 (Always) Function 0 (F0): Bridge Configuration Register Space xxx x (Note) xxx xxxx xx 00 (Always) 80h 0000 0000 1001 0 or 1000 0 000 Index Function 1 (F1): SMI Status and ACPI Timer Register Space sold 0000 0000 1001 0 or 1000 0 001 Index 80h 0000 0000 1001 0 or 1000 0 001 Index Function 2 (F2): IDE Controller Register Space sold 0000 0000 1001 0 or 1000 0 010 Index 80h 0000 0000 1001 0 or 1000 0 010 Index Index Function 3 (F3): XpressAUDIO Subsystem Register Space Index Index Index Index 80h 0000 0000 1001 0 or 1000 0 011 Index Index Function 4 (F4): Video Controller Register Space Index Index Index Index 80h 0000 0000 1001 0 or 1000 0 100 Index Index	31	30 24	23 16	15 11	10 8	7 2	
Function 0 (F0): Bridge Configuration Register Space Index 80h 0000 0000 1001 0 or 1000 0 000 Index Function 1 (F1): SMI Status and ACPI Timer Register Space Index Index 80h 0000 0000 1001 0 or 1000 0 001 Index Function 1 (F1): SMI Status and ACPI Timer Register Space Index Index 80h 0000 0000 1001 0 or 1000 0 001 Index Function 2 (F2): IDE Controller Register Space Index Index Index 80h 0000 0000 1001 0 or 1000 0 010 Index Function 3 (F3): XpressAUDIO Subsystem Register Space Index Index Index 80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space Index Index Index 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space Index Index Index 80h 0000 0000 1001 1 or 1000 0 100 Index Note: Th	Configuration Space Mapping	RSVD	Bus Number	Device Number	Function	Index	DWORD 00
Function 1 (F1): SMI Status and ACPI Timer Register Space 80h 0000 0000 1001 0 or 1000 0 001 Index Function 2 (F2): IDE Controller Register Space 80h 0000 0000 1001 0 or 1000 0 010 Index Function 2 (F2): IDE Controller Register Space 80h 0000 0000 1001 0 or 1000 0 010 Index Function 3 (F3): XpressAUDIO Subsystem Register Space 80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 0 100 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD28 for Chipset Register Space and AD27 for USB Register Space	1 (Enable)	000 0000	0000 0000	xxxx x (Note)	ххх	XXXX XX	00 (Always)
Function 1 (F1): SMI Status and ACPI Timer Register Space 80h 0000 0000 1001 0 or 1000 0 001 Index Function 2 (F2): IDE Controller Register Space 80h 0000 0000 1001 0 or 1000 0 010 Index Function 2 (F2): IDE Controller Register Space 80h 0000 0000 1001 0 or 1000 0 010 Index Function 3 (F3): XpressAUDIO Subsystem Register Space 80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 0 100 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD27 for USB Register Space	Function 0 (F0): E	Bridge Configuration	on Register Space				
80h 0000 0000 1001 0 or 1000 0 001 Index Function 2 (F2): IDE Controller Register Space 80h 0000 0000 1001 0 or 1000 0 010 Index 80h 0000 0000 1001 0 or 1000 0 010 Index Function 3 (F3): XpressAUDIO Subsystem Register Space 80h 0000 0000 1001 0 or 1000 0 011 Index 80h 0000 0000 1001 0 or 1000 0 011 Index 80h 0000 0000 1001 0 or 1000 0 011 Index 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	8	Эh	0000 0000	1001 0 or 1000 0	000	In	dex
Function 2 (F2): IDE Controller Register Space Note: Note: Note: Note: Note: Note: Note: AD26 low: IDSEL = AD28 for Chipset Register Space Note: Note: Strap pin H26 low: IDSEL = AD26 for Chipset Register Space Strap pin H26 low: IDSEL = AD26 for Chipset Register Space	Function 1 (F1): S	MI Status and AC	PI Timer Register S	Space			
80h 0000 0000 1001 0 or 1000 0 010 Index Function 3 (F3): XpressAUDIO Subsystem Register Space 80h 0000 0000 1001 0 or 1000 0 011 Index 80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	8)h	0000 0000	1001 0 or 1000 0	001	In	dex
Function 3 (F3): XpressAUDIO Subsystem Register Space 80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space Space	Function 2 (F2): I	DE Controller Regi	ster Space				
80h 0000 0000 1001 0 or 1000 0 011 Index Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	8)h	0000 0000	1001 0 or 1000 0	010	In	dex
Function 4 (F4): Video Controller Register Space 80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	Function 3 (F3):)	(pressAUDIO Subs	ystem Register Sp	bace			
80h 0000 0000 1001 0 or 1000 0 100 Index PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	80)h	0000 0000	1001 0 or 1000 0	011	In	dex
PCIUSB: USB Controller Register Space 80h 0000 0000 1001 1 or 1000 1 000 Index Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	Function 4 (F4): \	/ideo Controller Re	gister Space				
Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	80)h	0000 0000	1001 0 or 1000 0	100	In	dex
Note: The device number depends upon the strapping of pin H26 (HOLD_REQ#) during POR. Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space	PCIUSB: USB Co	ntroller Register S	расе				
Strap pin H26 low: IDSEL = AD28 for Chipset Register Space and AD29 for USB Register Space Strap pin H26 high: IDSEL = AD26 for Chipset Register Space and AD27 for USB Register Space							
	Note: The device Strap pin H	number depends up 26 low: IDSEL = AD	oon the strapping of 28 for Chipset Regi	pin H26 (HOLD_RE ster Space and AD2	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex
	Note: The device Strap pin H Strap pin H	number depends up 26 low: IDSEL = AD 26 high: IDSEL = AI	oon the strapping of 28 for Chipset Regi D26 for Chipset Reg	pin H26 (HOLD_RE ster Space and AD2 jister Space and AD	EQ#) during POR. 29 for USB Register	Space	dex

Table 4-1. PCI Configuration Address Register (0CF8h)

4.2 REGISTER SUMMARY

The tables in this subsection summarize all the registers of the CS5530A. Included in the tables are the register's reset

values and page references where the bit formats are found.

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-15)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 153
02h-03h	16	RO	Device Identification Register	0100h	Page 153
04h-05h	16	R/W	PCI Command Register	000Fh	Page 153
06h-07h	16	R/W	PCI Status Register	0280h	Page 154
08h	8	RO	Device Revision ID Register	xxh	Page 154
09h-0Bh	24	RO	PCI Class Code Register	060100h	Page 154
0Ch	8	R/W	PCI Cache Line Size Register	00h	Page 154
0Dh	8	R/W	PCI Latency Timer Register	00h	Page 154
0Eh	8	RO	PCI Header Type Register	80h	Page 154
0Fh	8	RO	PCI BIST Register	00h	Page 154
10h-1Fh			Reserved	xxh	Page 154
20h-3Fh			Reserved	00h	Page 154
40h	8	R/W	PCI Function Control Register 1	89h	Page 155
41h	8	R/W	PCI Function Control Register 2	10h	Page 155
42h	8	R/W	PCI Function Control Register 3	ACh	Page 155
43h	8	R/W	USB Shadow Register	03h	Page 156
44h	8	R/W	Reset Control Register	01h	Page 156
45h-4Fh			Reserved	00h	Page 156
50h	8	R/W	PIT Control/ISA CLK Divider	7Bh	Page 157
51h	8	R/W	ISA I/O Recovery Control Register	40h	Page 157
52h	8	R/W	ROM/AT Logic Control Register	F8h	Page 157
53h	8	R/W	Alternate CPU Support Register	00h	Page 157
54h-59h			Reserved	xxh	Page 158
5Ah	8	R/W	Decode Control Register 1	03h	Page 158
5Bh	8	R/W	Decode Control Register 2	20h	Page 158
5Ch	8	R/W	PCI Interrupt Steering Register 1	00h	Page 159
5Dh	8	R/W	PCI Interrupt Steering Register 2	00h	Page 159
5Eh-6Fh			Reserved	xxh	Page 159
70h-71h	16	R/W	General Purpose Chip Select Base Address Register	0000h	Page 159
70h-71h	8	R/W	General Purpose Chip Select Dase Address Register	000011 00h	Page 159
73h-7Fh		1\/ VV	Reserved	xxh	Page 159
80h	8	R/W	Power Management Enable Register 1	00h	Page 160
81h	8	R/W	Power Management Enable Register 2	00h	Page 161
82h	8	R/W	Power Management Enable Register 3	00h	Page 161 Page 162
83h	8	R/W	Power Management Enable Register 4	00h	Page 163
84h	8	RO		00h	_
			Second Level Power Management Status Mirror Register 1		Page 164
85h	8	RO RO	Second Level Power Management Status Mirror Register 2 Second Level Power Management Status Mirror Pegister 3	00h 00h	Page 165
86h			Second Level Power Management Status Mirror Register 3		Page 166
87h	8	RO	Second Level Power Management Status Mirror Register 4	00h	Page 167
88h	8	R/W	General Purpose Timer 1 Count Register	00h	Page 167
89h	8	R/W	General Purpose Timer 1 Control Register	00h	Page 168
8Ah	8	R/W	General Purpose Timer 2 Count Register	00h	Page 168
8Bh	8	R/W	General Purpose Timer 2 Control Register	00h	Page 169
8Ch	8	R/W	IRQ Speedup Timer Count Register	00h	Page 169
8Dh	8	R/W	Video Speedup Timer Count Register	00h	Page 169
8Eh	8	R/W	VGA Timer Count Register	00h	Page 169
8Fh			Reserved	xxh	Page 169

Table 4-2. Function 0: PCI Header and	Bridge Configuration Registers Summary

F0 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-15
90h	8	R/W	GPIO Pin Direction Register 1	00h	Page 170
91h	8	R/W	GPIO Pin Data Register 1	00h	Page 170
92h	8	R/W	GPIO Control Register 1	00h	Page 170
93h	8	R/W	Miscellaneous Device Control Register	00h	Page 171
94h	8	R/W	Suspend Modulation OFF Count Register	00h	Page 171
95h	8	R/W	Suspend Modulation ON Count Register	00h	Page 171
96h	8	R/W	Suspend Configuration Register	00h	Page 171
97h	8	R/W	GPIO Control Register 2	00h	Page 172
98h-99h	16	R/W	Primary Hard Disk Idle Timer Count Register	0000h	Page 172
9Ah-9Bh	16	R/W	Floppy Disk Idle Timer Count Register	0000h	Page 172
9Ch-9Dh	16	R/W	Parallel / Serial Idle Timer Count Register	0000h	Page 172
9Eh-9Fh	16	R/W	Keyboard / Mouse Idle Timer Count Register	0000h	Page 173
A0h-A1h	16	R/W	User Defined Device 1 Idle Timer Count Register	0000h	Page 173
A2h-A3h	16	R/W	User Defined Device 2 Idle Timer Count Register	0000h	Page 173
A4h-A5h	16	R/W	User Defined Device 3 Idle Timer Count Register	0000h	Page 173
A6h-A7h	16	R/W	Video Idle Timer Count Register	0000h	Page 173
A8h-A9h	16	R/W	Video Overflow Count Register	0000h	Page 173
AAh-ABh			Reserved	xxh	Page 173
ACh-ADh	16	R/W	Secondary Hard Disk Idle Timer Count Register	0000h	Page 174
AEh	8	WO	CPU Suspend Command Register	00h	Page 174
AFh	8	WO	Suspend Notebook Command Register	00h	Page 174
B0h-B3h			Reserved	xxh	Page 174
B4h	8	RO	Floppy Port 3F2h Shadow Register	xxh	Page 174
B5h	8	RO	Floppy Port 3F7h Shadow Register	xxh	Page 174
B6h	8	RO	Floppy Port 1F2h Shadow Register	xxh	Page 174
B7h	8	RO	Floppy Port 1F7h Shadow Register	xxh	Page 174
B8h	8	RO	DMA Shadow Register	xxh	Page 175
B9h	8	RO	PIC Shadow Register	xxh	Page 175
BAh	8	RO	PIT Shadow Register	xxh	Page 175
BBh	8	RO	RTC Index Shadow Register	xxh	Page 175
BCh	8	R/W	Clock Stop Control Register	00h	Page 176
BDh-BFh			Reserved	xxh	Page 176
C0h-C3h	32	R/W	User Defined Device 1 Base Address Register	00000000h	Page 176
C4h-C7h	32	R/W	User Defined Device 2 Base Address Register	00000000h	Page 176
C8h-CBh	32	R/W	User Defined Device 3 Base Address Register	00000000h	Page 176
CCh	8	R/W	User Defined Device 1 Control Register	00h	Page 176
CDh	8	R/W	User Defined Device 2 Control Register	00h	Page 177
CEh	8	R/W	User Defined Device 3 Control Register	00h	Page 177
CFh			Reserved	xxh	Page 177
D0h	8	WO	Software SMI Register	00h	Page 177
D1h-EBh			Reserved	xxh	Page 177
ECh	8	R/W	Timer Test Register	00h	Page 177
EDh-F3h			Reserved	xxh	Page 177
F4h	8	RC	Second Level Power Management Status Register 1	00h	Page 178
F5h	8	RC	Second Level Power Management Status Register 1	00h	Page 178 Page 179
F6h	8	RC	Second Level Power Management Status Register 2 Second Level Power Management Status Register 3	00h	Page 179 Page 180
F7h	8	RO/RC	Second Level Power Management Status Register 3	00h	Page 180 Page 181
	0	NO/NO	Cocond Level I ower management Status Register 4	0011	1 aye 101

	Width		Reference		
F1 Index	(Bits)	Туре	Name	Reset Value	(Table 4-16)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 182
02h-03h	16	RO	Device Identification Register	0101h	Page 182
04h-05h	16	R/W	PCI Command Register	0000h	Page 182
06h-07h	16	RO	PCI Status Register	0280h	Page 182
08h	8	RO	Device Revision ID Register	00h	Page 182
09h-0Bh	24	RO	PCI Class Code Register	068000h	Page 182
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 182
0Dh	8	RO	PCI Latency Timer Register	00h	Page 182
0Eh	8	RO	PCI Header Type Register	00h	Page 182
0Fh	8	RO	PCI BIST Register	00h	Page 182
10h-13h	32	R/W	Base Address Register (F1BAR): Sets base address for memory mapped SMI status and ACPI timer support registers (summarized in Table 4-4).	00000000h	Page 182
14h-3Fh			Reserved	00h	Page 182
40h-FFh			Reserved	xxh	Page 182

Table 4-3. Function 1: PCI Header Registers for SMI Status and ACPI Timer Summary

Table 4-4. F1BAR: SMI Status and ACPI Timer Registers Summary

F1BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-17)
00h-01h	16	RO	Top SMI Status Mirror Register	0000h	Page 183
02h-03h	16	RC	Top SMI Status Register	0000h	Page 184
04h-05h	16	RO	Second Level General Traps & Timers Status Mirror	0000h	Page 185
06h-07h	16	RC	Second Level General Traps & Timers Status Register	0000h	Page 186
08h-09h	16	Read to Enable	SMI Speedup Disable Register	0000h	Page 186
0Ah-1Bh			Reserved	xxh	Page 186
1Ch-1Fh	32	RO	ACPI Timer Count Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch.	00FFFFFCh	Page 186
20h-4Fh			Reserved	xxh	Page 187
50h-FFh	Note: The registers located at F1BAR+Memory Offset 50h-FFh can also be accessed at F0 Index 50h-FFh. The pre- ferred method is to program these registers through the F0 Register Space. Refer to Table 4-2 "Function 0: PCI Header and Bridge Configuration Registers Summary" on page 142 for summary information.				

F2 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-18)
00h-01h	16	RO	Vendor Identification Register	1078h	Page 188
02h-03h	16	RO	Device Identification Register	0102h	Page 188
04h-05h	16	R/W	PCI Command Register	0000h	Page 188
06h-07h	16	RO	PCI Status Register	0280h	Page 188
08h	8	RO	Device Revision ID Register	00h	Page 188
09h-0Bh	24	RO	PCI Class Code Register	010180h	Page 188
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 188
0Dh	8	RO	PCI Latency Timer Register	00h	Page 188
0Eh	8	RO	PCI Header Type Register	00h	Page 188
0Fh	8	RO	PCI BIST Register	00h	Page 188
10h-1Fh			Reserved	00h	Page 188
20h-23h	32	R/W	Base Address Register (F2BAR): Sets base address for I/O mapped IDE controller configuration registers (summarized in Table 4-6).	00000001h	Page 188
24h-3Fh			Reserved	00h	Page 188
40h-FFh			Reserved	xxh	Page 188

Table 4-5. Function 2: PCI Header Registers for IDE Controller Summary

Table 4-6. F2BAR: IDE Controller Configuration Registers Summary

F2BAR+ I/O Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-19)
00h	8	R/W	IDE Bus Master 0 Command Register: Primary	00h	Page 189
01h			Reserved	xxh	Page 189
02h	8	R/W	IDE Bus Master 0 Status Register: Primary	00h	Page 189
03h			Reserved	xxh	Page 189
04h-07h	32	R/W	IDE Bus Master 0 PRD Table Address: Primary	0000000h	Page 189
08h	8	R/W	IDE Bus Master 1 Command Register: Secondary	00h	Page 189
09h			Reserved	xxh	Page 189
0Ah	8	R/W	IDE Bus Master 1 Status Register: Secondary	00h	Page 189
0Bh			Reserved	xxh	Page 190
0Ch-0Fh	32	R/W	IDE Bus Master 1 PRD Table Address: Secondary	0000000h	Page 190
10h-1Fh			Reserved	xxh	Page 190
20h-23h	32	R/W	Channel 0 Drive 0: PIO Register	0000E132h	Page 190
24h-27h	32	R/W	Channel 0 Drive 0: DMA Control Register	00077771h	Page 191
28h-2Bh	32	R/W	Channel 0 Drive 1: PIO Register	0000E132h	Page 191
2Ch-2Fh	32	R/W	Channel 0 Drive 1: DMA Control Register	00077771h	Page 191
30h-33h	32	R/W	Channel 1 Drive 0: PIO Register	0000E132h	Page 191
34h-37h	32	R/W	Channel 1 Drive 0: DMA Control Register	00077771h	Page 191
38h-3Bh	32	R/W	Channel 1 Drive 1: PIO Register	0000E132h	Page 191
3Ch-3Fh	32	R/W	Channel 1 Drive 1: DMA Control Register	00077771h	Page 191
40h-FFh			Reserved	xxh	Page 191

-								
F3 Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-20)			
00h-01h	16	RO	Vendor Identification Register	1078h	Page 192			
02h-03h	16	RO	Device Identification Register	0103h	Page 192			
04h-05h	16	R/W	PCI Command Register	0000h	Page 192			
06h-07h	16	RO	PCI Status Register	0280h	Page 192			
08h	8	RO	Device Revision ID Register	00h	Page 192			
09h-0Bh	24	RO	PCI Class Code Register	040100h	Page 192			
0Ch	8	RO	PCI Cache Line Size Register	00h	Page 192			
0Dh	8	RO	PCI Latency Timer Register	00h	Page 192			
0Eh	8	RO	PCI Header Type Register	00h	Page 192			
0Fh	8	RO	PCI BIST Register	00h	Page 192			
10h-13h	32	R/W	Base Address Register (F3BAR): Sets base address for memory mapped XpressAUDIO subsystem configuration registers (summarized in Table 4-8).	00000000h	Page 192			
14h-3Fh			Reserved	00h	Page 192			
40h-FFh			Reserved	xxh	Page 192			

Table 4-7. Function 3: PCI Header Registers for XpressAUDIO Subsystem Summary

Table 4-8. F3BAR: XpressAUDIO Subsystem Configuration Registers Summary

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-21)
00h-03h	32	R/W	Codec GPIO Status Register	00100000h	Page 193
04h-07h	32	R/W	Codec GPIO Control Register	0000000h	Page 193
08h-0Bh	32	R/W	Codec Status Register	0000000h	Page 193
0Ch-0Fh	32	R/W	Codec Command Register	0000000h	Page 193
10h-11h	16	RO	Second Level Audio SMI Source Mirror Register	0000h	Page 194
12h-13h	16	RC	Second Level Audio SMI Source Register	0000h	Page 195
14h-17h	32	RO/RC	I/O Trap SMI and Fast Write Status Register	0000000h	Page 196
18h-19h	16	R/W	I/O Trap SMI Enable Register	0000h	Page 197
1Ah-1Bh	16	R/W	Internal IRQ Enable Register	0000h	Page 198
1Ch-1Dh	16	R/W	Internal IRQ Control Register	0000h	Page 198
1Eh-1Fh	16	WO	Internal IRQ Mask Register	xxxxh	Page 198
20h	8	R/W	Audio Bus Master 0 Command Register	00h	Page 199
21h	8	RC	Audio Bus Master 0 SMI Status Register	00h	Page 199
22h-23h			Reserved	xxh	Page 199
24h-27h	32	R/W	Audio Bus Master 0 PRD Table Address	0000000h	Page 199
28h	8	R/W	Audio Bus Master 1 Command Register	00h	Page 199
29h	8	RC	Audio Bus Master 1 SMI Status Register	00h	Page 200
2Ah-2Bh			Reserved	xxh	Page 200
2Ch-2Fh	32	R/W	Audio Bus Master 1 PRD Table Address	0000000h	Page 200
30h	8	R/W	Audio Bus Master 2 Command Register	00h	Page 200
31h	8	RC	Audio Bus Master 2 SMI Status Register	00h	Page 200
32h-33h			Reserved	xxh	Page 200
34h-37h	32	R/W	Audio Bus Master 2 PRD Table Address	0000000h	Page 200
38h	8	R/W	Audio Bus Master 3 Command Register	00h	Page 201
39h	8	RC	Audio Bus Master 3 SMI Status Register	00h	Page 201
3Ah-3Bh			Reserved	xxh	Page 201
3Ch-3Fh	32	R/W	Audio Bus Master 3 PRD Table Address	0000000h	Page 201
40h	8	R/W	Audio Bus Master 4 Command Register	00h	Page 201

F3BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-21)
41h	8	RC	Audio Bus Master 4 SMI Status Register	00h	Page 202
42h-43h			Reserved	xxh	Page 202
44h-47h	32	R/W	Audio Bus Master 4 PRD Table Address	0000000h	Page 202
48h	8	R/W	Audio Bus Master 5 Command Register	00h	Page 202
49h	8	RC	Audio Bus Master 5 SMI Status Register	00h	Page 202
4Ah-4Bh			Reserved	xxh	Page 202
4Ch-4Fh	32	R/W	Audio Bus Master 5 PRD Table Address	0000000h	Page 202
50h-FFh			Reserved	xxh	Page 202

Table 4-8. F3BAR: XpressAUDIO Subsystem Configuration Registers Summary (Continued)

Table 4-9. Function 4: PCI Header Registers for Video Controller Summary

F4 Index	Width	Turne	Name	Reset	Reference
F4 Index	(Bits)	Туре	Name	Value	(Table 4-22)
00h-01h	16	RO	Vendor Identification	1078h	Page 203
02h-03h	16	RO	Device Identification	0104h	Page 203
04h-05h	16	R/W	PCI Command	0000h	Page 203
06h-07h	16	RO	PCI Status	0280h	Page 203
08h	8	RO	Device Revision ID	00h	Page 203
09h-0Bh	24	RO	PCI Class Code	030000h	Page 203
0Ch	8	RO	PCI Cache Line Size	00h	Page 203
0Dh	8	RO	PCI Latency Timer	00h	Page 203
0Eh	8	RO	PCI Header Type	00h	Page 203
0Fh	8	RO	PCI BIST Register	00h	Page 203
10h-13h	32	R/W	Base Address Register (F4BAR): Sets base address for memory mapped video controller configuration registers (summarized in Table 4-10).	00000000h	Page 203
14h-3Fh			Reserved	00h	Page 203
40h-FFh			Reserved	xxh	Page 203

Table 4-10. F4BAR: Video Controller Configuration Registers Summary

F4BAR+ Memory Offset	Width (Bits)	Туре	Register Name	Reset Value	Reference (Table 4-23)
00h-03h	32	R/W	Video Configuration Register	00000000h	Page 204
04h-07h	32	R/W	Display Configuration Register	x0000000h	Page 205
08h-0Bh	32	R/W	Video X Register	xxxxxxxh	Page 206
0Ch-0Fh	32	R/W	Video Y Register	xxxxxxxh	Page 206
10h-13h	32	R/W	Video Scale Register	xxxxxxxh	Page 206
14h-17h	32	R/W	Video Color Key Register	xxxxxxxh	Page 206
18h-1Bh	32	R/W	Video Color Mask Register	xxxxxxxh	Page 206
1Ch-1Fh	32	R/W	Palette Address Register	xxxxxxxh	Page 206
20h-23h	32	R/W	Palette Data Register	xxxxxxxh	Page 206
24h-27h	32	R/W	Dot Clock Configuration Register	00000000h	Page 207
28h-2Bh	32	R/W	CRC Signature and TFT/TV Configuration Register	00000100h	Page 208
2Ch-FFh			Reserved	xxh	Page 208

USB Index	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-25)
00h-01h	16	RO	Vendor Identification	0E11h	Page 210
02h-03h	16	RO	Device Identification	A0F8h	Page 210
04h-05h	16	R/W	Command Register	0000h	Page 210
06h-07h	16	R/W	Status Register	0280h	Page 211
08h	8	RO	Device Revision ID	06h	Page 211
09h-0Bh	24	RO	Class Code	0C0310h	Page 211
0Ch	8	R/W	Cache Line Size	00h	Page 211
0Dh	8	R/W	Latency Timer	00h	Page 211
0Eh	8	RO	Header Type	00h	Page 211
0Fh	8	RO	BIST Register	00h	Page 211
10h-13h	32	R/W	Base Address Register (USB BAR): Sets the base address of the memory mapped USB controller registers. Refer to Table 4-26 for the USB controller register bit formats and reset values.	00000000h	Page 211
14h-3Bh			Reserved	xxh	Page 211
3Ch	8	R/W	Interrupt Line Register	00h	Page 211
3Dh	8	RO	Interrupt Pin Register	01h	Page 211
3Eh	8	RO	Min. Grant Register	00h	Page 212
3Fh	8	RO	Max. Latency Register	50h	Page 212
40h-43h	32	R/W	ASIC Test Mode Enable Register	000F0000h	Page 212
44h-45h	16	R/W	ASIC Operational Mode Enable	0000h	Page 212
46h-47h			Reserved	00h	Page 212
48h-FFh			Reserved	xxh	Page 212

Table 4-12. USB BAR: USB Controller Registers Summary

USB BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-26)
00h-03h	32	R/W	HcRevision	00000110h	Page 213
04h-07h	32	R/W	HcControl	00000000h	Page 213
08h-0Bh	32	R/W	HcCommandStatus	00000000h	Page 213
0Ch-0Fh	32	R/W	HcInterruptStatus	00000000h	Page 213
10h-13h	32	R/W	HcInterruptEnable	00000000h	Page 214
14h-17h	32	R/W	HcInterruptDisable	C000006Fh	Page 214
18h-1Bh	32	R/W	HcHCCA	00000000h	Page 214
1Ch-1Fh	32	R/W	HcPeriodCurrentED	00000000h	Page 214
20h-23h	32	R/W	HcControlHeadED	00000000h	Page 214
24h-27h	32	R/W	HcControlCurrentED	00000000h	Page 214
28h-2Bh	32	R/W	HcBulkHeadED	00000000h	Page 214
2Ch-2Fh	32	R/W	HcBulkCurrentED	00000000h	Page 214
30h-33h	32	R/W	HcDoneHead	00000000h	Page 214
34h-37h	32	R/W	HcFmInterval	00002EDFh	Page 215
38h-3Bh	32	RO	HcFrameRemaining	00002Exxh	Page 215
3Ch-3Fh	32	RO	HcFmNumber	00000000h	Page 215
40h-43h	32	R/W	HcPeriodicStart	00000000h	Page 215
44h-47h	32	R/W	HcLSThreshold	00000628h	Page 215
48h-4Bh	32	R/W	HcRhDescriptorA	01000002h	Page 215
4Ch-4Fh	32	R/W	HcRhDescriptorB	00000000h	Page 216

USB BAR+ Memory Offset	Width (Bits)	Туре	Name	Reset Value	Reference (Table 4-26)		
50h-53h	32	R/W	HcRhStatus	0000000h	Page 216		
54h-57h	32	R/W	HcRhPortStatus[1]	00000628h	Page 217		
58h-5Bh	32	R/W	HcRhPortStatus[2]	0100002h	Page 218		
5Ch-5Fh	32		Reserved	0000000h	Page 218		
60h-9Fh			Reserved	xxh	Page 218		
100h-103h	32	R/W	HceControl	00000000h	Page 219		
104h-107h	32	R/W	HceInput	000000xxh	Page 219		
108h-10Dh	32	R/W	HceOutput	000000xxh	Page 219		
10Ch-10Fh	32	R/W	HceStatus	00000000h	Page 219		

Table 4-12. USB BAR: USB Controller Registers Summary (Continued)

Geode[™] CS5530A

I/O Port	Туре	Name	Reference
DMA Channe	I Control Regis	ters (Table 4-27)	·
000h	R/W	DMA Channel 0 Address Register	Page 220
001h	R/W	DMA Channel 0 Transfer Count Register	Page 220
002h	R/W	DMA Channel 1 Address Register	Page 220
003h	R/W	DMA Channel 1 Transfer Count Register	Page 220
004h	R/W	DMA Channel 2 Address Register	Page 220
005h	R/W	DMA Channel 2 Transfer Count Register	Page 220
006h	R/W	DMA Channel 3 Address Register	Page 220
007h	R/W	DMA Channel 3 Transfer Count Register	Page 220
008h	Read	DMA Status Register, Channels 3:0	Page 220
	Write	DMA Command Register, Channels 3:0	Page 220
009h	WO	Software DMA Request Register, Channels 3:0	Page 221
00Ah	R/W	DMA Channel Mask Register, Channels 3:0	Page 221
00Bh	WO	DMA Channel Mode Register, Channels 3:0	Page 221
00Ch	WO	DMA Clear Byte Pointer Command, Channels 3:0	Page 221
00Dh	WO	DMA Master Clear Command, Channels 3:0	Page 221
00Eh	WO	DMA Master Clear Command, Channels 3:0	Page 221 Page 221
00En 00Fh	WO	DMA Clear Mask Register Command, Channels 3:0	Page 221 Page 221
00FN 0C0h	R/W	DMA White Mask Register Command, Channels 3.0 DMA Channel 4 Address Register (Not used)	Page 221 Page 221
0C0h			
	R/W	DMA Channel 4 Transfer Count Register (Not Used)	Page 221
0C4h	R/W	DMA Channel 5 Address Register	Page 221
0C6h	R/W	DMA Channel 5 Transfer Count Register	Page 221
0C8h	R/W	DMA Channel 6 Address Register	Page 221
0CAh	R/W	DMA Channel 6 Transfer Count Register	Page 221
0CCh	R/W	DMA Channel 7 Address Register	Page 221
0CEh	R/W	DMA Channel 7 Transfer Count Register	Page 222
0D0h	Read	DMA Status Register, Channels 7:4	Page 222
	Write	DMA Command Register, Channels 7:4	Page 222
0D2h	WO	Software DMA Request Register, Channels 7:4	Page 222
0D4h	R/W	DMA Channel Mask Register, Channels 7:0	Page 222
0D6h	WO	DMA Channel Mode Register, Channels 7:4	Page 222
0D8h	WO	DMA Clear Byte Pointer Command, Channels 7:4	Page 222
0DAh	WO	DMA Master Clear Command, Channels 7:4	Page 222
0DCh	WO	DMA Clear Mask Register Command, Channels 7:4	Page 222
0DEh	WO	DMA Write Mask Register Command, Channels 7:4	Page 222
DMA Page Re	egisters (Table	4-28)	
081h	R/W	DMA Channel 2 Low Page Register	Page 223
082h	R/W	DMA Channel 3 Low Page Register	Page 223
083h	R/W	DMA Channel 1 Low Page Register	Page 223
087h	R/W	DMA Channel 0 Low Page Register	Page 223
089h	R/W	DMA Channel 6 Low Page Register	Page 223
08Ah	R/W	DMA Channel 7 Low Page Register	Page 223
08Bh	R/W	DMA Channel 5 Low Page Register	Page 223
08Fh	R/W	ISA Refresh Low Page Register	Page 223
481h	R/W	DMA Channel 2 High Page Register	Page 223 Page 223
482h	R/W		
		DMA Channel 3 High Page Register	Page 223
483h	R/W	DMA Channel 1 High Page Register	Page 223
487h	R/W	DMA Channel 0 High Page Register	Page 223

Geode[™] CS5530A

Register Descriptions (Continued)

	1	Table 4-13. ISA Legacy I/O Registers Summary	
I/O Port	Туре	Name	Reference
489h	R/W	DMA Channel 6 High Page Register	Page 223
48Ah	R/W	DMA Channel 7 High Page Register	Page 223
48Bh	R/W	DMA Channel 5 High Page Register	Page 223
Programmable	nterval Time	r Registers (Table 4-29)	
040h	Write	PIT Timer 0 Counter	Page 224
	Read	PIT Timer 0 Status	Page 224
041h	Write	PIT Timer 1 Counter (Refresh)	Page 224
	Read	PIT Timer 1 Status (Refresh)	Page 224
042h	Write	PIT Timer 2 Counter (Speaker)	Page 224
	Read	PIT Timer 2 Status (Speaker)	Page 224
043h	Write	PIT Mode Control Word Register	Page 224
043h	R/W	PIT Read-Back Command	
		Read Status Command	
		Counter Latch Command	
Programmable I	Interrupt Cor	ntroller Registers (Table 4-30)	
020h / 0A0h	WO	Master / Slave PCI IWC1	Page 225
021h / 0A1h	WO	Master / Slave PIC ICW2	Page 225
021h / 0A1h	WO	Master / Slave PIC ICW3	Page 225
021h / 0A1h	WO	Master / Slave PIC ICW4	Page 225
021h / 0A1h	R/W	Master / Slave PIC OCW1	Page 225
020h / 0A0h	WO	Master / Slave PIC OCW2	Page 225
020h / 0A0h	WO	Master / Slave PIC OCW3	Page 226
020h / 0A0h	RO	Master / Slave PIC Interrupt Request and Service Registers for OCW3 Commands	Page 226
Keyboard Contr	oller Registe	ers (Table 4-31)	
060h	R/W	External Keyboard Controller Data Register	Page 227
061h	R/W	Port B Control Register	Page 227
062h	R/W	External Keyboard Controller Mailbox Register	Page 227
064h	R/W	External Keyboard Controller Command Register	Page 227
066h	R/W	External Keyboard Controller Mailbox Register	Page 227
092h	R/W	Port A Control Register	Page 227
Real Time Clock	Registers (Table 4-32)	
070h	WO	RTC Address Register	Page 227
071h	R/W	RTC Data Register	Page 227
Miscellaneous F	Registers (Ta	ble 4-33)	
170h-177h/ 376h	R/W	Secondary IDE Registers	Page 228
1F0h-1F7h/ 3F6h	R/W	Primary IDE Registers	Page 228
4D0h	R/W	Interrupt Edge/Level Select Register 1	Page 228
4D1h	R/W	Interrupt Edge/Level Select Register 2	Page 228
121Ch-121Fh	RO	ACPI Timer Count Register	Page 228
		Note: The ACPI Timer Count Register is accessible through I/O Port 121Ch. Otherwise use F1BAR+Offset 1Ch.	

151

ACPI_ BASE	Туре	Align	Length	Name	Reset Value	Reference (Table 4-34)
00h-03h	R/W	4	4	P_CNT: Processor Control Register	00000000h	Page 229
04h	RO	1	1	P_LVL2: Enter C2 Power State Register	00h	Page 229
05h		1	1	Reserved	00h	Page 229
06h	R/W	1	1	SMI_CMD: OS/BIOS Requests Register (ACPI Enable/ Disable Port)	00h	Page 229
07h		1	1	Reserved	00h	Page 229
08h-09h	R/W	2	2	PM1A_STS: PM1A Status Register	0000h	Page 230
0Ah-0Bh	R/W	2	2	PM1A_EN: PM1A Enable Register	0000h	Page 230
0Ch-0Dh	R/W	4	2	PM1A_CNT: PM1A Control Register	0000h	Page 230
0Eh-0Fh	R/W	2	2	SETUP_IDX: Setup Index Register (V-ACPI internal index register)	0000h	Page 230
10h-11h	R/W	2	2	GPE0_STS: General Purpose Event 0 Status Register	0000h	Page 231
12h-13h	R/W	2	2	GPE0_EN: General Purpose Event 0 Enable Register	0000h	Page 231
14h-17h	R/W	4	4	SETUP_DATA: Setup Data Register (V-ACPI internal data register)	00000000h	Page 232
18h-1Fh			8	Reserved: For Future V-ACPI Implementations		Page 232

Table 4-14.	V-ACPI I/O	Register	Space	Summarv
			opass	e anna y

4.3 CHIPSET REGISTER SPACE

The Chipset Register Space of the CS5530A is comprised of five separate functions (Function 0 through 4, F0-F4), each with its own register space and PCI header registers. F1-F4 have memory or I/O mapped registers from a Base Address Register (BAR). The PCI header registers in all functions are very similar.

- F0: Bridge Configuration Register Space
- F1: SMI Status and ACPI Timer Register Space
- F2: IDE Controller Register Space
- F3: XpressAUDIO Subsystem Register Space
- F4: Video Controller Register Space

.

_

_ .

4.3.1 Bridge Configuration Registers - Function 0

The register space designated as Function 0 (F0) contains registers used to configure features (e.g., power management) and functionality unique to the CS5530A. All registers in Function 0 are directly accessed (i.e., there are no memory or I/O mapped registers in F0). Table 4-15 gives the bit formats for these registers.

The registers at F0 Index 50h-FFh can also be accessed at F1BAR+Memory Offset 50h-FFh. The preferred method is to program these registers through the F0 register space.

If the F0 PCI Configuration Trap bit (F0 Index 41h[0]) is enabled and an access is attempted to any of the F0 PCI header and bridge configuration registers except F0 Index 40h-43h, an SMI is generated instead.

Bit	Description			
Index 00h-01h Vendor Identification Register (RO)		Reset Value = 1078h		
15:0	15:0 Vendor Identification Register (Read Only)			
Index 02h-03h Device Identification Register (RO) Reset Value = 01				
15:0	Device Identification	Register (Read Only)		
Index 04h	-05h	PCI Command Register (R/W)	Reset Value = 000Fh	
15:10	Reserved: Set to 0.			
9	Fast Back-to-Back Enable (Read Only): This function is not supported when the CS5530A is a master. It is always disabled (always reads 0).		530A is a master. It is always	
8	SERR#: Allow SERR# assertion on detection of special errors. 0 = Disable (Default); 1 = Enable.		= Enable.	
7	Wait Cycle Control (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).			
6	Parity Error: Allow the CS5530A to check for parity errors on PCI cycles for which it is a target, and to assert PERR# when a parity error is detected. 0 = Disable (Default); 1 = Enable.			
5	VGA Palette Snoop Enable (Read Only): This function is not supported in the CS5530A. It is always disabled (always reads 0).			
4	Memory Write and Invalidate: Allow the CS5530A to do memory write and invalidate cycles, if the PCI Cache Line Size Register (F0 Index 0Ch) is set to 16 bytes (04h). 0 = Disable (Default); 1 = Enable.			
3	Special Cycles: Allow the CS5530A to respond to special cycles. 0 = Disable; 1 = Enable (Default).			
	This bit must be enabled to allow the CPU Warm Reset internal signal to be triggered from a CPU Shutdown cycle.			
2	Bus Master: Allow the CS5530A bus mastering capabilities. 0 = Disable; 1 = Enable (Default).			
	This bit must be set to	1.		
1	Memory Space: Allow	the CS5530A to respond to memory cycles from the PCI bus. 0	= Disable; 1 = Enable (Default).	
0	I/O Space: Allow the C	CS5530A to respond to I/O cycles from the PCI bus. 0 = Disable;	1 = Enable (Default).	

Bit	Description	
ndex 06h-	07h PCI Status Register (R/W)	Reset Value = 0280h
15	Detected Parity Error: This bit is set whenever a parity error is detected. Write 1 to clear.	
14	Signaled System Error: This bit is set whenever the CS5530A asserts SERR# active. Write 1 to clear.	
13	Received Master Abort: This bit is set whenever a master abort cycle occurs while the CS abort occurs when a PCI cycle is not claimed, except for special cycles. Write 1 to clear.	5530A is the master. A master
12	Received Target Abort: This bit is set whenever a target abort is received while the CS55 cycle.	30A is the master for the PCI
11	Write 1 to clear. Signaled Target Abort: This bit is set whenever the CS5530A signals a target abort. This error occurs for an address that hits in the active address decode space of the CS5530A. Write 1 to clear.	occurs when an address parity
10:9	DEVSEL# Timing (Read Only): These bits are always 01, as the CS5530A always respondent active target with medium DEVSEL# timing. 00 = Fast; 01 = Medium; 10 = Slow; 11 = Reset	
8	 Data Parity Detected: This bit is set when: 1) The CS5530A asserted PERR# or observed PERR# asserted. 2) The CS5530A is the master for the cycle in which a parity error occurred and the Parity = 1). Write 1 to clear. 	r Error bit is set (F0 Index 04h[6]
7	Fast Back-to-Back Capable (Read Only): As a target, the CS5530A is capable of accepti transactions. 0 = Disable; 1 = Enable.	ng fast back-to-back
	This bit is always set to 1.	
6:0	Reserved: Set to 0.	
ndex 08h	Device Revision ID Register (RO)	Reset Value = xxh
7:0	Device Revision ID (Read Only): Device revision level. 20h for revision A; 30h for revision	В.
ndex 09h-	0Bh PCI Class Code Register (RO)	Reset Value = 060100h
ndex 0Ch	PCI Cache Line Size Register (R/W)	Reset Value = 00h
7:0	PCI Cache Line Size Register: This register sets the size of the PCI cache line, in increm- write and invalidate cycles, the PCI cache line size must be set to 16 bytes (04h), and the M must be set (F0 Index $04h[4] = 1$).	, ,
ndex 0Dh	PCI Latency Timer Register (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0.	
3:0	PCI Latency Timer Value: The PCI Latency Timer Register prevents system lockup when cycle that the CS5530A masters. If the value is set to 00h (default), the timer is disabled. If t value, bits [3:0] become the four most significant bytes in a timer that counts PCI clocks for reset on each valid data transfer. If the timer expires before the next assertion of TRDY# is r transaction with a master abort and asserts SERR#, if enabled to do so (F0 Index 04h[8] =	he timer is written with any other slave response. The timer is eceived, the CS5530A stops the
ndex 0Eh	PCI Header Type Register (RO)	Reset Value = 80h
7:0	PCI Header Type Register (Read Only): This register defines the format of this header. T Additionally, bit 7 defines whether this PCI device is a multifunction device (bit 7 = 1) or not	
ndex 0Fh	PCI BIST Register (RO)	Reset Value = 00h
-	BIST Capable (Read Only): Is device capable of running a built-in self-test (BIST)? 0 = No	
7	Start BIST: Setting this bit to a one starts up a BIST on the device. The device resets this b	bit when the BIST has been com
6	pleted. (Not supported.)	
6 5:4	Reserved (Read Only)	
6 5:4 3:0	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code i tion code of zero indicates the BIST has successfully been completed. All other values indi	cate some type of BIST failure.
6 5:4	Reserved (Read Only) BIST Completion Code (Read Only): Upon completion of the BIST, the completion code i tion code of zero indicates the BIST has successfully been completed. All other values indi	

Bit	Description	
ndex 40h	PCI Function Control Register 1 (R/W)	Reset Value = 89
7	PCI Interrupt Acknowledge Cycle Response: Allow the CS5530A responds to PCI interrupt ack 0 = Disable; 1 = Enable.	nowledge cycles.
6	Single Write Mode: The CS5530A accepts only single cycle write transfers as a slave on the PCI b disconnect with the first data transferred. 0 = Disable (accepts burst write cycles); 1 = Enable.	ous and performs a targ
5	Single Read Mode: The CS5530A accepts only single cycle read transfers as a slave on the PCI b disconnect with the first data transferred. 0 = Disable (accepts burst read cycles); 1 = Enable.	ous and performs a targ
4	Retry PCI Cycles: Retry inbound PCI cycles if data is buffered and waiting to go outbound on PC	I. 0 = No Retry; 1 = Ret
3	Write Buffer: PCI slave write buffer. 0 = Disable; 1 = Enable.	
2:1	Reserved: Set to 0.	
0	BS8/16: This bit can not be written. Always = 1.	
lote: Bits	6 and 5 emulate the behavior of first generation SIO devices developed for PCI. They should norma	ally remain cleared.
ndex 41h	PCI Function Control Register 2 (R/W)	Reset Value = 10
7	Burst to Beat: If this bit is set to 1, the CS5530A performs a single access from the PCI bus. If set enabled.	t to 0, burst accesses a
6	F2 IDE Configuration Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access is attempted to one of the F2 PCI header registers, an SMI is g	enerated instead.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].	
5	PERR# Signals SERR#: Assert SERR# any time that PERR# is asserted or detected active by th PERR# assertion to be cascaded to NMI (SMI) generation in the system). 0 = Disable; 1 = Enable	(
4	Write Buffer Enable: Allow 16-byte buffering for X-Bus to PCI bus writes. 0 = Disable; 1 = Enable	
3	F1 Power Management Configuration Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs to one of the F1 PCI configuration header registers, an	SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].	
2:1	Subtractive Decode: These bits determine the point at which the CS5530A accepts cycles that and device. The CS5530A defaults to taking subtractive decode cycles in the default cycle clock, but can Slow Decode cycle point if all other PCI devices decode in the fast or medium clocks. Disabling subtractive with care, as all ISA and ROM cycles are decoded subtractively. 00 = Default sample (4th clock from FRAME# active) 01 = Slow sample (3rd clock from FRAME# active) 1x = No subtractive decode	an be moved up to the
0	F0 PCI Configuration Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access is attempted to any of the F0 PCI header registers except F0 Ir generated instead.	ndex 40h-43h, an SMI i
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].	
ndex 42h	PCI Function Control Register 3 (R/W)	Reset Value = AC
7	USB SMI I/O Configuration: Route USB-generated SMI to SMI# pin. 0 = Disable; 1 = Enable, USB-generated SMI pulls SMI# pin active (low).	
6	USB SMI Power Mgmnt Configuration: Route USB-generated SMI to Top Level SMI Status Reg Offset 00h/02h[14]. 0 = Disable; 1 = Enable.	ister, F1BAR+Memory
5	Delayed Transactions: Allow delayed transactions on the PCI bus. 0 = Disable; 1 = Enable. Also see F0 Index 43h[1].	
4	DMA Priority: Allow USB DMA to have priority over other DMA requests. 0 = Disable; 1 = Enable.	
3	No X-Bus ARB, Buffer Enable: When the CS5530A is a PCI target, allow buffering of PCI transa arbitration. 0 = Disable; 1 = Enable.	
2	HOLD_REQ# (Pin H26): HOLD_REQ# signal (pin H26). 0 = Disable; 1 = Enable.	
	Note: Although the HOLD_REQ# signal function is no longer applicable, this bit must remain at it enabled, set to 1) for non-preemptive arbitration to operate correctly.	s reset value (i.e.,

Bit	Description	
1	F4 Video Configuration Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access is attempted to one of the F4 PCI header registers, an SMI is	generated instead.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].	
	Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].	
0	F3 Audio Configuration Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access is attempted to one of the F3 PCI header registers, an SMI is	generated instead.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[5].	
dex 43h	USB Shadow Register (R/W)	Reset Value = 03h
7	Reserved: Set to 0.	
6	Enable SA20: Pin AD22 configuration. 0 = GPIO4; 1 = SA20. If bit 6 or bit 2 is set to 1, then pin a	AD22 = SA20.
5	Legacy Cycles Assert HOLD_REQ#: Allow legacy cycles to cause HOLD_REQ# to be asserted	d. 0 = Disable; 1 = Enable
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset value (i.e., disable).	
4	Read Cycles Assert HOLD_REQ#: Allow read cycles to cause HOLD_REQ# to be asserted. 0 =	= Disable; 1 = Enable.
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset	/alue (i.e., disable).
3	Any Cycle Asserts HOLD_REQ#: Allow any cycle to cause HOLD_REQ# to be asserted. 0 = D	isable; 1 = Enable.
	Note: The HOLD_REQ# signal function is no longer applicable, this bit must remain at its reset	/alue (i.e., disable).
2	Enable SA[23:20]: Pins AF23, AE23, AC21, and AD22 configuration. 0 = GPIO[7:4]; 1 = SA[23:2] If F0 Index 43h bit 6 or bit 2 is set to 1, then pin AD22 = SA20.	20].
1	PCI Retry Cycles: When the CS5530A is a PCI target and the PCI buffer is not empty, allow the	PCI bus to retry cycles.
	0 = Disable; 1 = Enable.	
	This bit works in conjunction with PCI bus delayed transactions bit. F0 Index 42h[5] must = 1 for t	his bit to be valid.
0	USB Core: 0 = Disable; 1 = Enable.	
dex 44h	Reset Control Register (R/W)	Reset Value = 01h
7	ISA Mode: This bit is set to read back the strap value of the INTR pin (pin P26) during POR.	
	0 = ISA Limited; 1 = ISA Master.	to this hit is not recom
	This bit can be written after POR# deasserts to change the ISA mode selected. However, writing mended due to the actual strapping done on the board.	
6	IDSEL Mode: This bit is set to read back the strap value of the HOLD_REQ# pin (pin H26) during	g POR.
	0 = AD28 is IDSEL for Chipset Register Space and AD29 is IDSEL for USB Register Space; 1 = AD26 is IDSEL for Chipset Register Space and AD27 is IDSEL for USB Register Space.	
	This bit can be written after POR# deasserts to change the IDSEL for OSB Register Space.	is hit is not recommended
	due to the actual strapping done on the board.	
5:4	Clock 32K Control: Controls the source of the CLK_32K pin (AE3).	
	00 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is not output on pin AE3 (De	fault)
	01 = CLK_32K is internally derived from CLK_14MHZ (pin P24) and is output on pin AE3 10 = CLK_32K is an input	
	11 = Invalid	
3	IDE Controller Reset: Reset both of the CS5530A IDE controllers' internal state machines. 0 = F	Run: 1 = Reset
0	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.	
2	IDE Reset: Reset IDE bus. 0 = Deassert IDE bus reset signal; 1 = Assert IDE bus reset signal.	
2	This bit is level-sensitive and must be explicitly cleared to 0 to remove the reset.	
1	PCI Reset: Reset PCI bus. 0 = Disable; 1 = Enable.	
•	When set, the CS5530A PCI_RST# output signal (pin C14) is asserted and all devices on the PC	l bus including PCILISE
	are reset. No other function within the CS5530A is affected by this bit. It does not reset PCI regis	
	Write 0 to clear. This bit is level-sensitive and must be cleared after the reset is enabled.	
0	X-Bus Warm Start: Reading and writing this bit has two different meanings/functions.	
0	X-Bus Warm Start: Reading and writing this bit has two different meanings/functions. Reading this bit: Has a warm start occurred since power-up? 0 = Yes; 1 = No	
0		/er-up).
0	Reading this bit: Has a warm start occurred since power-up? 0 = Yes; 1 = No	ver-up).

Bit	Description				
ndex 50h		PIT Control/ISA CL	K Divider (R/W)	Reset Value = 7Bh	
7	PIT Software Reset: 0 = Disable; 1 = Enable.				
6	PIT Counter 1: 0 = Forces Counter 1 output (OUT1) to zero; 1 = Allows Counter 1 output (OUT1) to pass to I/O Port 061h[4].				
5	PIT Counter 1 Enable: 0 = Sets GATE1 input low; 1 = Sets GATE1 input high.				
4	PIT Counter 0: 0 = Force	s Counter 0 output (OUT0) to	zero; 1 = Allows Counter 0 outp	out (OUT0) to pass to IRQ0.	
3	PIT Counter 0 Enable: 0	= Sets GATE0 input low; 1 = S	Sets GATE0 input high.		
2:0	approximately 8 MHz. 000 = Reserved	100 = Divide b	y five	x, which is typically programmed fo	
	001 = Divide by two	101 = Divide by			
	010 = Divide by three 011 = Divide by four	110 = Divide by 111 = Divide by			
			30 or 33 MHz PCI clock, use a s	setting of 011 (divide by 4).	
ndex 51h		ISA I/O Recovery Con	trol Register (R/W)	Reset Value = 40h	
7:4			f ISA bus clocks between back-	-to-back 8-bit I/O read cycles. This	
	0000 = 1 ISA clock 0001 = 2 ISA clocks 0010 = 3 ISA clocks 0011 = 4 ISA clocks	0100 = 5 ISA clocks 0101 = 6 ISA clocks 0110 = 7 ISA clocks 0111 = 8 ISA clocks	1000 = 9 ISA clocks 1001 = 10 ISA clocks 1010 = 11 ISA clocks 1011 = 12 ISA clocks	1100 = 13 ISA clocks 1101 = 14 ISA clocks 1110 = 15 ISA clocks 1111 = 16 ISA clocks	
3:0	16-Bit I/O Recovery: These bits determine the number of ISA bus clocks between back-to-back 16-bit I/O cycles. This count is in addition to a preset one-clock delay built into the controller.				
	0000 = 1 ISA clock	0100 = 5 ISA clocks	1000 = 9 ISA clocks	1100 = 13 ISA clocks	
	0001 = 2 ISA clocks	0101 = 6 ISA clocks	1001 = 10 ISA clocks	1101 = 14 ISA clocks	
	0010 = 3 ISA clocks 0011 = 4 ISA clocks	0110 = 7 ISA clocks 0111 = 8 ISA clocks	1010 = 11 ISA clocks 1011 = 12 ISA clocks	1110 = 15 ISA clocks 1111 = 16 ISA clocks	
ndex 52h		ROM/AT Logic Contr		Reset Value = F8h	
7		ate A20 and Fast Reset: Enable; 1 = Enable (snooping).	bles the snoop logic associated	I with keyboard commands for A20	
		controller handles the commar	nds.		
6	Game Port GPORT_CS# 201h). 0 = Disable; 1 = Er		6# to be asserted for writes to th	ne game port (I/O Port 200h and	
5	Game Port GPORT_CS# on Reads: Allow GPORT_CS# to be asserted for reads to the game port (I/O Port 200h and 201h). 0 = Disable; 1 = Enable.				
4		ion on Warm Reset: Force A: tate of A20). 0 = Disable; 1 = I	5 5	t (guarantees that A20M# is deas-	
3		· · /	decode and the logical functions	· ·	
2	Upper ROM Address Range: KBROMCS# is asserted for ISA memory read accesses. 0 = FFFC0000h-FFFFFFFh (256 KB, Default); 1 = FF000000h-FFFFFFFh (16 MB) Note: PCI Positive decoding for the ROM space is enabled at F0 Index 5Bh[5]).				
1	ROM Write Enable: Assert KBROMCS# during writes to configured ROM space (configured in bits 2 and 0), allowing Flash programming. 0 = Disable; 1 = Enable.				
0	0 = 000F0000h-000FFFF	nge: KBROMCS# is asserted Fh (64 KB, Default); 1 = 000E ling for the ROM space is enal			
Index 53h		Alternate CPU Supp		Reset Value = 00	
7	Reserved: Set to 0.				
6		ISA: Block ISA cycle on game	e port (I/O Port 200h and 201h)	write, 0 = Disable: 1 = Enable	
5		e: 0 = Disable; 1 = Enable.			
•	This bit must be set to 0.				

Bit	Description	
3	Game Port Write SMI: Allow SMI generation on writes to game port (I/O Port 200h and 201h). 0	= Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	Second level SMI status is reported at F0 Index 84h/F4h[4].	
	For "Game Port Read SMI", see F0 Index 83h[4].	
2	RTC Enable/RTC Pin Configuration: 0 = SMEMW# (Pin AF3) and SMEMR# (Pin AD4), RTC de	ecode disabled;
	1 = RTCCS# (Pin AF3) and RTCALE (Pin AD4), RTC decode enabled.	
1	Note: The RTC Index Shadow Register (F0 Index BBh) is independent of the setting of this bit.	
1 0	Reserved: Set to 1 after register reset. Failure to do this leaves IRQ13 in an unsupported mode. Generate SMI on A20M# toggle: 0 = Disable; 1 = Enable. This bit must be set to 1.	
0	SMI status is reported in F1BAR+Memory Offset 00h/02h[7] (only).	
		Deset Malassand
ndex 54h-		Reset Value = xxh
ndex 5Ah	Decode Control Register 1 (R/W)	Reset Value = 03h
7	Secondary Floppy Positive Decode: Selects PCI positive or subtractive decoding for accesses 372h, 373h, 375h, and 377h. 0 = Subtractive; 1 = Positive.	to I/O Port
6	Primary Floppy Positive Decode: Selects PCI positive or subtractive decoding for accesses to 3F2h, 3F4h, 3F5h, and 3F7h. 0 = Subtractive; 1 = Positive.	I/O Port
5	COM4 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 2I 0 = Subtractive; 1 = Positive.	E8h-2EFh.
4	COM3 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3I 0 = Subtractive; 1 = Positive.	E8h-3EFh.
3	COM2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 2I 0 = Subtractive; 1 = Positive.	F8h-2FFh.
2	COM1 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 3I 0 = Subtractive; 1 = Positive.	F8h-3FFh.
1	Keyboard Controller Positive Decode: Selects PCI positive or subtractive decoding for accesse 060h and 064h (and 062h/066h if enabled). 0 = Subtractive; 1 = Positive.	es to I/O Port
0	Real Time Clock Positive Decode: Selects PCI positive or subtractive decoding for accesses to 070h-7Fh. 0 = Subtractive; 1 = Positive.	I/O Port
	tive decoding by the CS5530A speeds up the I/O cycle time. These I/O Ports do not exist in the CS sitive decode is enabled, the port exists on the ISA bus.	65530A. It is assumed that
ndex 5Bh	Decode Control Register 2 (R/W)	Reset Value = 20h
7	Keyboard I/O Port 062h/066h Decode: This alternate port to the keyboard controller is provided notebook keyboard controller mailbox. 0 = Disable; 1 = Enable.	l in support of the 8051SI
6	Reserved: Set to 0.	
5	BIOS ROM Positive Decode: Selects PCI positive or subtractive decoding for accesses to the contractive; 1 = Positive.	onfigured ROM space.
	ROM configuration is at F0 Index 52h[2:0].	
4	Secondary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for ac 177h and 376h. 0 = Subtractive; 1 = Positive.	
	177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe	rences to the ISA bus.
4	177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe Primary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive.	erences to the ISA bus. ses to I/O Port 1F0h-1F7
3	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode mode disables the subtractive decode of the subtrac	erences to the ISA bus. ses to I/O Port 1F0h-1F7 erences to the ISA bus.
	177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register refe Primary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive.	erences to the ISA bus. ses to I/O Port 1F0h-1F7 erences to the ISA bus.
3	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the primary IDE Controller Positive Decode: Selects PCI positive or subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the positive Decode: Selects PCI positive decoding for access and a positive Decode mode disables this IDE controller entirely and routes any register reference of the positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 27. 	erences to the ISA bus. ses to I/O Port 1F0h-1F7 erences to the ISA bus.
3	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode. Selects PCI positive or subtractive decoding for access to I/O Port 276 0 = Subtractive; 1 = Positive. 	erences to the ISA bus. Ises to I/O Port 1F0h-1F7 Irences to the ISA bus. 8h-27Fh.
3	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the second seco	erences to the ISA bus. Ises to I/O Port 1F0h-1F7 Irrences to the ISA bus. 8h-27Fh.
3	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decoding for access and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode mode disables this IDE controller entirely and routes any register reference of the subtractive decode. Note: Subtractive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 27. 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 37. 0 = Subtractive; 1 = Positive. 	erences to the ISA bus. Isses to I/O Port 1F0h-1F7 Perences to the ISA bus. 8h-27Fh. 8h-37Fh.
3 2 1	 177h and 376h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode mode disables this IDE controller entirely and routes any register reference and 3F6h. 0 = Subtractive; 1 = Positive. Note: Subtractive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 274. 0 = Subtractive; 1 = Positive. This bit does not affect 7BCh-7BEh, which is always decoded subtractively. LPT2 Positive Decode: Selects PCI positive or subtractive decoding for accesses to I/O Port 374. 0 = Subtractive; 1 = Positive. This bit does not affect 678h-67Ah, which is always decoded subtractively. 	erences to the ISA bus. Isses to I/O Port 1F0h-1F7 Perences to the ISA bus. 8h-27Fh. 8h-37Fh.

Geode[™] CS5530A

Index 5Ch PCI Interrupt Steering Register 1 (R/W) 7:4 INTB# Target Interrupt: Selects target interrupt for INTB#. 0000 = Disable 0100 = IRQ3 0010 = RSVD 0101 = IRQ5 0010 = RSVD 0101 = IRQ3 0011 = IRQ3 0111 = IRQ7 0011 = IRQ3 0111 = IRQ7 0001 = Disable 0100 = IRQ4 0000 = Disable 0100 = IRQ4 0001 = RSVD 0110 = IRQ5 0001 = IRQ1 0101 = IRQ3 0001 = RSVD 0110 = IRQ6 0001 = RSVD 0110 = IRQ1 0001 = RSVD 0111 = IRQ7 0011 = IRQ3 0111 = IRQ7 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I Note: The target Interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compartibility. Interrupt Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 0010 = RSVD 0111 = IRQ3 1110 = I 0011 = IRQ3 0111 = IRQ3 1010 = I	SVD RQ14 RQ15 RQ12
0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ3 1110 = I 0011 = IRQ3 0111 = IRQ6 1010 = IRQ1 1111 = I 3:0 INTA# Target Interrupt: Selects target interrupt for INTA#. 0000 = RSVD 1100 = I 0001 = IRQ1 0100 = IRQ5 1001 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ5 1001 = IRQ9 1101 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ9 1101 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ9 1101 = I 0011 = RSVD 0110 = IRQ6 1001 = RQ1 1111 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 0010 = RSVD 0100 = IRQ4 1000 = RSVD 100 = I 0011 = IRQ3 0100 = IRQ4 1000 = RSVD 1100 = I 0010 = RSVD 0100 = IRQ6 1010 = IRQ9 1101 = I 0011 = IRQ3 0111 = IRQ5 1001 = IRQ9 1100 = I 0011 = IRQ3 0110 = IRQ6 1010 = IRQ9 1100 = I 00	SVD RQ14 RQ15 RQ12
0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 3:0 INTA# Target Interrupt: Selects target interrupt for INTA#. 0000 = Disable 0100 = RQ4 1000 = RSVD 1100 = I 0:001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1110 = I 0000 = RSVD 1100 = I 0:001 = RQ1 0101 = IRQ5 1001 = IRQ9 1110 = I 0000 = IRQ1 1110 = I 0:001 = RQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 1100 = I 0000 = IRQ1 1100 = I 0:001 = RQ3 0111 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I ott: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0:001 = RQ1 0101 = IRQ3 0111 = IRQ3 1110 = I 0011 = IRQ3 1110 = I 0:001 = RQ1 0100 = IRQ4 1000 = RSVD 1100 = I 001 = RQ1 1100 = I 0:001 = RQ3 0111 = IRQ3 0111 = IRQ3 1011 = IRQ3 1110 = I	SVD RQ14 RQ15 RQ12
0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTA# Target Interrupt: Selects target interrupt for INTA#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 000 = RSVD 1100 = I 0010 = RSVD 0111 = IRQ5 1001 = IRQ10 1111 = I 011 = I 011 = IRQ3 1111 = I 0011 = IRQ3 0111 = IRQ5 1001 = IRQ10 1110 = I 010 = IRQ4 1000 = RSVD 1100 = I 1011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 011 = IRQ1 1111 = I 1001 = RG4 000 = RSVD 1001 = IRQ1 1110 = I 000 = RSVD 1100 = I 0010 = RSVD 0110 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 1100 = I 0011 = RQ1 0111 = RQ7 1011 = IRQ1 1111 = I 001 = IRQ1 1110 = I 0010 = RSVD 0110 = IRQ3 0111 = RQ7 1011 = IRQ1 1111 = I 0001 = RQ1	RQ14 RQ15 RQ12
0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 3:0 INTA# Target Interrupt: Selects target interrupt for INTA#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0:001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 001 = IRQ9 1101 = I 0:010 = RSVD 0:110 = IRQ6 1010 = IRQ1 1111 = I 001 = IRQ1 1110 = I 0:011 = IRQ3 0:111 = IRQ7 10:11 = IRQ1 1111 = I 001 = IRQ3 1111 = I 0:012 = RSVD 0:110 = IRQ6 10:00 = IRQ1 1111 = I 1111 = I interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. note: The target Interrupt: Selects target interrupt for INTD#. 0:000 = Disable 0:001 = IRQ4 1:000 = IRQ9 1:100 = I 0:001 = RQ1 0:011 = IRQ5 1:001 = IRQ1 1:111 = I 0:001 = IRQ3 0:111 = IRQ7 1:011 = IRQ1 1:111 = I 0:001 = RQ1 0:101 = IRQ5 1:001 = IRQ1 1:100 = I 0:011 = IRQ3 0:111 = IRQ7 1:011 = IRQ1 1:111 = I 0:001 = IRQ1	RQ15 RQ12
3:0 INTA# Target Interrupt: Selects target interrupt for INTA#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ6 1011 = IRQ9 1111 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I INTD# Target Interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. node state 1000 = RSVD 1100 = I 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = IRQ1 1011 = IRQ5 1001 = IRQ9 1100 = I 0001 = IRQ1 0101 = IRQ6 1010 = IRQ9 1101 = I 011 = IRQ1 1111 = I 0001 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 1111 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 1101 = I 1101 = I 1101	RQ12
0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 0011 = IRQ3 0111 = IRQ6 1010 = IRQ9 1101 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I INTD# Target Interrupt Seciest starget interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 1000 = I 1000 = I 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = RSVD 0110 = IRQ6 1010 = IRQ9 1101 = I 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0010 = RQ1 0101 = IRQ3 0111 = IRQ7 </td <td></td>	
0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = IRQ1 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Intervent the target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. PCI Interrupt Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 000 = I 000 = I 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 011 = I 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 011 = IRQ3 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ9 1101 = I 001 = IRQ1 11111 = I 0011 = IRQ3 1101 = I <td></td>	
0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 10te: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1000 = RSVD 1100 = I 0010 = RSVD 0110 = IRQ6 1011 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 0010 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ3 0111 = IRQ5 1001 = IRQ9 1100 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1110 = I 0011 = IRQ1 0111 = IRQ5 1001 = IRQ1 1111 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 0011 = IRQ3 0111 = IRQ2 1011 = IRQ1	SVD
0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Iote: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. Intervent Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ10 1110 = I 0001 = RVD 0101 = IRQ3 1011 = IRQ10 1110 = I 0010 = RSVD 0101 = IRQ5 1001 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0010 = RSVD 0100 = IRQ4 1000 = RSVD 1100 = I 0010 = RSVD 0101 = IRQ5 1001 = IRQ9 1110 = I 0010 = RQ4 1000 = RSVD 1100 = I 001 = IRQ1 1111 = I 0010 = RSVD 0101 = IRQ5 1001 = IRQ1 1111 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 =	340
Interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. PCI Interrupt Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ3 0111 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 1100 = I 0001 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 0001 = RSVD 1101 = F 0001 = RSVD 0110 = IRQ5 1001 = IRQ1 1110 = I 0011 = IRQ3 1111 = I 0001 = RSVD 0110 = IRQ5 1001 = IRQ1 1111 = I 0011 = RQ3 1111 = I 0011 = RQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 0111 = IRQ3 1111 = I Iote: The target interrupt must first be config	रQ14
compatibility. PCI Interrupt Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0001 = RSVD 1100 = I 0001 = RSVD 0110 = IRQ5 1001 = IRQ9 1101 = F 001 = RQ1 1110 = I 0001 = RSVD 0110 = IRQ3 0111 = IRQ7 1011 = IRQ1 1110 = I 0011 = RQ3 0111 = IRQ7 1011 = IRQ1 1111 = I otter The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. Index 70h-71h General Purpose Chip Select Base Address Register (R/W) I 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value	₹Q15
PCI Interrupt Steering Register 2 (R/W) 7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1110 = I 0011 = RQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 1001 = IRQ1 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 1100 = I 0010 = RSVD 0110 = IRQ5 1001 = IRQ1 1111 = I 0011 = IRQ3 1111 = I 0011 = IRQ3 0111 = IRQ5 1001 = IRQ1 1111 = I 1001 = IRQ3 1111 = I 0111 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I 1111 = I Iote: The target inter	tain PCI interrupt
7:4 INTD# Target Interrupt: Selects target interrupt for INTD#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0010 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 011 = I 001 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ1 1111 = I 001 = IRQ3 0111 = IRQ7 1011 = IRQ1 1111 = I Intervent modes 0111 = IRQ7 1011 = IRQ1 1111 = I Intervent General Purpose Chip Select Base Address Register (R/W) Intervent 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. Intis register, together with General Purpose Chip Select	Reset Value = 00
0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = F 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = F 0010 = Disable 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 1100 = I 0010 = RSVD 0110 = IRQ5 1001 = IRQ10 1110 = I 0011 = IRQ3 1110 = I 0011 = IRQ3 0111 = IRQ5 1001 = IRQ10 1110 = I 0011 = IRQ3 1110 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 1111 = IRQ7 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 1111 = I Iote: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. Index 70h-71h General Purpose Chip Select Kontrol Register (R/W) Index 72h 15:0	
0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 001 = RQ1 0101 = IRQ5 1001 = IRQ9 1110 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I INter: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair 1111 = I Index 5Eh-6Fh Reserved Index 70h-71h General Purpose Chip Select Base Address Register (R/W) I 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to operation of the GPCS# pin. Index 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its outpu	2012
0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = RQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 1100 = I 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 1111 = I 0011 = RQ1 0101 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 0011 = RQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 0011 = IRQ3 1110 = I 011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = IRQ10 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. Interve Interve 15:0 General Purpose Chip Select I/O Base Address: This register, together with General Purpose Chip Select Control Register (R/W) Intis register, together with Gener	
0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I 3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = RSVD 0110 = IRQ6 1000 = RSVD 1101 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = RSVD 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ10 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. 1111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured Aldress: This register (R/W) I I 15:0 General Purpose Chip Select I/O Base Address: This register, together with	
3:0 INTC# Target Interrupt: Selects target interrupt for INTC#. 0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = I 0010 = RSVD 0110 = IRQ5 1001 = IRQ10 1110 = I 0011 = RQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to mair compatibility. ndex 70h-71h General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to operation of the GPCS# pin. ndex 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Inde figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Inde figured I/O address (base address configured in F0 Inde figured in F0 Inde figured I/O address (base address configured in F0 Inde figured I/O Configured I/	
0000 = Disable 0100 = IRQ4 1000 = RSVD 1100 = I 0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to main compatibility. ndex 5Eh-6Fh Reserved ndex 70h-71h General Purpose Chip Select Base Address Register (R/W) If 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to operation of the GPCS# pin. ndex 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Inder figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Inder figured in F0 Inder fi	
0001 = IRQ1 0101 = IRQ5 1001 = IRQ9 1101 = F 0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to main compatibility. ndex 5Eh-6Fh Reserved ndex 70h-71h General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to coperation of the GPCS# pin. ndex 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured I/O address (base address configured in F0 Indefigured in F0 Indefigured I/O address (base address configured in F0 Indefigured I/O address (base address co	0.12
0010 = RSVD 0110 = IRQ6 1010 = IRQ10 1110 = I 0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to main compatibility. ndex 5Eh-6Fh Reserved ndex 70h-71h General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to operation of the GPCS# pin. ndex 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Index figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Index figured in bits [4:0])	
0011 = IRQ3 0111 = IRQ7 1011 = IRQ11 1111 = I Note: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to main compatibility. ndex 5Eh-6Fh Reserved ndex 70h-71h General Purpose Chip Select Base Address Register (R/W) I 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to a operation of the GPCS# pin. ndex 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Index figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Index Formation F0	
Jote: The target interrupt must first be configured as level sensitive via I/O Port 4D0h and 4D1h in order to main compatibility. Index 5Eh-6Fh Reserved Index 70h-71h General Purpose Chip Select Base Address Register (R/W) 15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to operation of the GPCS# pin. Index 72h General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Index figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Index Figured In F0	
15:0 General Purpose Chip Select I/O Base Address: This 16-bit value represents the I/O base address assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to a operation of the GPCS# pin. Index 72h General Purpose Chip Select Control Register (R/W) 7 General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured I/O address (base address configured I/O Indefigured I/O address (base address configured I/O Infigured I/O Infigure	Reset Value = xx
assertion of the GPCS# signal. This register, together with General Purpose Chip Select Control Register (F0 Index 72h) is used to a operation of the GPCS# pin. ndex 72h General Purpose Chip Select: Control Register (R/W) 7 General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Index figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Index figured I/O address (base address configured in F0 Index figured In F	Reset Value = 0000
operation of the GPCS# pin. Index 72h General Purpose Chip Select Control Register (R/W) 7 General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured In F0 Indefigured In Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured In	
 General Purpose Chip Select: GPCS# (pin AF26). 0 = Disable; 1 = Enable. If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured in F0 Indefigured in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured Indefigured I/O address (base address configured In F0 Indefigured Indefigured Info Indefigured Info Indefigured Info Info Indefigured Info Info Info Info Info Info Info Info	onfigure the
If the GPCS# signal is disabled (i.e., this bit = 0) its output is permanently driven high. 6 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured I/O address (base address configured I/O Indefigured I/O Ind	Reset Value = 00
 Writes Result in Chip Select: Writes to configured I/O address (base address configured in F0 Indefigured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Indefigured In F	
figured in bits [4:0]) causes GPCS# signal to be asserted. 0 = Disable; 1 = Enable. 5 Reads Result in Chip Select: Reads from configured I/O address (base address configured in F0 Ir	701
	x 70h and range co
	dex 70h and range
4:0 General Purpose Chip Select I/O Address Range: This 5-bit field selects the range of GPCS# sign	al.
00000 = 1 byte 01111 = 16 bytes	
00001 = 2 bytes 11111 = 32 bytes	
00011 = 4 bytes All other combinations are reserved.	
00111 = 8 bytes	
Note: This register, together with General Purpose Chip Select Base Address Register (F0 Index 70h) is used to tion of the GPCS# pin.	configure the opera
ndex 73h-7Fh Reserved	Reset Value = xx

Table 4-15. F0 Index xxh: PCI Header and	Bridge Configuration Registers	(Continued)
--	--------------------------------	-------------

Bit	Description
Index 80h	Power Management Enable Register 1 (R/W) Reset Value = 00h
7:6	Reserved: Set to 0.
5	Codec SDATA_IN SMI: Allow AC97 codec to generate an SMI due to codec producing a positive edge on SDATA_IN. 0 = Disable; 1 = Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[2].
4	Video Speedup: Any video activity, as decoded from the serial connection (PSERIAL register, bit 0) from the GX-series processor disables clock throttling (via SUSP#/SUSPA# handshake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable.
	The duration of the speedup is configured in the Video Speedup Timer Count Register (F0 Index 8Dh). Detection of an external VGA access (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) on the PCI bus is also supported. This configuration is non-standard, but it does allow the power management routines to support an external VGA chip.
3	IRQ Speedup: Any unmasked IRQ (per I/O Port 021h/0A1h) or SMI disables clock throttling (via SUSP#/SUSPA# hand-shake) for a configurable duration when the system is power managed using CPU Suspend modulation. 0 = Disable; 1 = Enable.
	The duration of the speedup is configured in the IRQ Speedup Timer Count Register (F0 Index 8Ch).
2	Traps: Globally enable all power management device I/O traps. 0 = Disable; 1 = Enable.
	This excludes the audio I/O traps. They are enabled at F3BAR+Memory Offset 18h.
1	Idle Timers: Globally enable all power management device idle timers. 0 = Disable; 1 = Enable.
	Note, disable at this level does not reload the timers on the enable. The timers are disabled at their current counts.
	This bit has no effect on the Suspend Modulation OFF/ON Timers (F0 Index 94h/95h), nor on the General Purpose (UDEFx) Timers (F0 Index 88h-8Bh). This bit must be set for the command to trigger the SUSP#/SUSPA# feature to function (see F0 Index AEh).
0	Power Management: Global power management. 0 = Disable; 1 = Enabled.
	This bit must be set (1) immediately after POST for some power management resources to function. Until this is done, the command to trigger the SUSP#/SUSPA# feature is disabled (see F0 Index AEh) and all SMI# trigger events listed for F0 Index 84h-87h are disabled. A '0' in this bit does NOT stop the Idle Timers if bit 1 of this register is a '1', but only prevents them from generating an SMI# interrupt. It also has no effect on the UDEF traps.

ndex 81h	Power Management Enable Register 2 (R/W)	Reset Value = 00h
7	Video Access Idle Timer Enable: Load timer from Video Idle Timer Count Register (F0 Index A6h) and	nd generate an SMI
	when the timer expires. 0 = Disable; 1 = Enable.	Ū
	If an access occurs in the video address range (sets bit 0 of the GX-series processor's PSERIAL regis reloaded with the programmed count.	ter) the timer is
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].	
6	User Defined Device 3 (UDEF3) Idle Timer Enable: Load timer from UDEF3 Idle Timer Count Register generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	er (F0 Index A4h) and
	If an access occurs in the programmed address range the timer is reloaded with the programmed cour UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).	nt.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].	
5	User Defined Device 2 (UDEF2) Idle Timer Enable: Load timer from UDEF2 Idle Timer Count Register generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	er (F0 Index A2h) and
	If an access occurs in the programmed address range the timer is reloaded with the programmed cour UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register).	nt.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].	
4	User Defined Device 1 (UDEF1) Idle Timer Enable: Load timer from UDEF1 Idle Timer Count Register generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	er (F0 Index A0h) and
	If an access occurs in the programmed address range the timer is reloaded with the programmed cour UDEF1 address programming is at F0 Index C0h (base address register) and CCh (control register).	nt.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[4].	
3	Keyboard/Mouse Idle Timer Enable: Load timer from Keyboard/Mouse Idle Timer Count Register (FC erate an SMI when the timer expires. 0 = Disable; 1 = Enable.	Index 9Eh) and ger
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed co Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)	unt.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].	
2	Parallel/Serial Idle Timer Enable: Load timer from Parallel/Serial Port Idle Timer Count Register (F0 erate an SMI when the timer expires. 0 = Disable; 1 = Enable.	Index 9Ch) and gen
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed co	unt.
	LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah	
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded)	
	COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[2].	
1	Floppy Disk Idle Timer Enable: Load timer from Floppy Disk Idle Timer Count Register (F0 Index 9A SMI when the timer expires. 0 = Disable; 1 = Enable.	h) and generate an
	If an access occurs in the address ranges (listed below) the timer is reloaded with the programmed con Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h	unt.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	
0	Primary Hard Disk Idle Timer Enable: Load timer from Primary Hard Disk Idle Timer Count Register generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	(F0 Index 98h) and
	If an access occurs in the address ranges selected in F0 Index 93h[5], the timer is reloaded with the pi	rogrammed count.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].	

Bit	Description
dex 82h	Power Management Enable Register 3 (R/W) Reset Value = 00
7	Video Access Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the video address range (sets bit 0 of the GX-series processor's PSERIAL register) an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[7].
6	User Defined Device 3 (UDEF3) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF3 address programming is at F0 Index C8h (base address register) and CEh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[4].
5	User Defined Device 2 (UDEF2) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF2 address programming is at F0 Index C4h (base address register) and CDh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[3].
4	User Defined Device 1 (UDEF1) Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the programmed address range an SMI is generated. UDEF1 address programming is at F0 Index C0h (base address register), and CCh (control register).
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[2].
3	Keyboard/Mouse Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[3].
2	Parallel/Serial Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh COM4: I/O Port 2E8h-2EFh
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[2].
1	Floppy Disk Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges (listed below) an SMI is generated. Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, or 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, or 377h
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[1].
0	Primary Hard Disk Trap: 0 = Disable; 1 = Enable.
	If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[5], an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[0].

Index 83h	Power Management Enable Register 4 (R/W)	Reset Value = 00h
7	Secondary Hard Disk Idle Timer Enable: Load timer from Secondary Hard Disk Idle Timer Count R and generate an SMI when the timer expires. 0 = Disable; 1 = Enable.	Register (F0 Index ACh
	If an access occurs in the address ranges selected in F0 Index 93h[4], the timer is reloaded with the Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[4].	programmed count.
6	Secondary Hard Disk Trap: 0 = Disable; 1 = Enable. If this bit is enabled and an access occurs in the address ranges selected in F0 Index 93h[4], an SM Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 86h/F6h[5].	I is generated.
5	ACPI Timer SMI: Allow SMI generation for MSB toggles on the ACPI Timer (F1BAR+Memory Offse 121Ch). 0 = Disable; 1 = Enable.	t 1Ch or I/O Port
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[0].	
4	Game Port Read SMI: Allow SMI generation on reads to game port (I/O Port 200h and 201h). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 84h/F4h[4].	
3	For "Game Port Write SMI" see F0 Index 53h[3]. VGA Timer Enable: Turn on VGA Timer and generate an SMI when the timer reaches 0. 0 = Disable VGA Timer programming is at F0 Index 8Eh and F0 Index 8Bh[6].	e; 1 = Enable.
	To reload the count in the VGA timer, disable it, optionally change the count value in F0 Index 8Eh[7 before enabling power management. SMI Status reporting is at F1BAR+Memory Offset 00h/02h[6] (only). Although grouped with the power management Idle Timers, the VGA Timer is not a power management Timer counts whether power management is enabled or disabled.	
2	Video Retrace Interrupt SMI: Allow SMI generation whenever video retrace occurs. 0 = Disable; 1 = This information is decoded from the serial connection (PSERIAL register, bit 7) from the GX-series p is normally not used for power management but for softVGA routines.	
1	SMI status reporting is at F1BAR+Memory Offset 00h/02h[5] (only). General Purpose Timer 2 (GP Timer 2) Enable: Turn on GP Timer 2 and generate an SMI when the 0 = Disable; 1 = Enable.	ne timer expires.
	This idle timer is reloaded from the assertion of GPIO7 (if programmed to do so). GP Timer 2 progra 8Ah and 8Bh[5,3,2]. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. Second level SMI status is reported at F1BAR+Memory Offset 04h/06h[1].	amming is at F0 Index
0	General Purpose Timer 1 (GP Timer 1) Enable: Turn on GP Timer 1 and generate an SMI when th 0 = Disable; 1 = Enable. This idle timer's load is multi-sourced and is reloaded any time an enabled event (F0 Index 89h[6:0])	
	GP Timer 1 programming is at F0 Index 88h and 8Bh[4]. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9].	

Bit	Description	
ndex 84h	Second Level Power Management Status Mirror Register 1 (RO)	Reset Value = 00h
7:5	Reserved	
4	Game Port SMI Status (Read Only): SMI was caused by R/W access to game port (I/O Port 200h 0 = No; 1 = Yes.	and 201h)?
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset	t 00h/02h[0].
	Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].	
3	GPIO7 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO7 pir 0 = No; 1 = Yes.	ז?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse SMI generation enabling is at F0 Index 97h[3].	t 00h/02h[0].
2	GPIO5 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO5 pir 0 = No; 1 = Yes.	n?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse SMI generation enabling is at F0 Index 97h[2].	t 00h/02h[0].
1	GPIO4 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO4 pir 0 = No; 1 = Yes.	n?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse SMI generation enabling is at F0 Index 97h[1].	t 00h/02h[0].
0	GPIO3 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO3 pir 0 = No; 1 = Yes.	n?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse SMI generation enabling is at F0 Index 97h[0].	t 00h/02h[0].
Note: Pro	perly-configured means that the GPIO pin must be enabled as a GPIO (if multiplexed pin), as an input	ut, and to cause an SM
This ider	register provides status on various power management SMI events to the SMI handler. It is called a tical register exists at F0 Index F4h. Reading this register does not clear the status, while reading its does clear the status.	Mirror register since a

Bit	Description	
Index 85h	Second Level Power Management Status Mirror Register 2 (RO)	Reset Value = 00h
7	Video Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Video Idle Timer (F0 Index A6h)? 0 = No; 1 = Yes.	Count Register
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[7].	
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read Only): SMI was caused by expirat Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.	ion of the UDEF3 Idle
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[6].	
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read Only): SMI was caused by expirat Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.	ion of the UDEF2 Idle
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse SMI generation enabling is at F0 Index 81h[5].	t 00h/02h[0].
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read Only): SMI was caused by expirat Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.	ion of the UDEF1 Idle
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[4].	
3	Keyboard/Mouse Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Keyb Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[3].	
2	Parallel/Serial Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Parallel/S Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.	Serial Port Idle Timer
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[2].	
1	Floppy Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Floppy Distister (F0 Index 9Ah)? 0 = No; 1 = Yes.	k Idle Timer Count Re
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[1].	
0	Primary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of the Prim Count Register (F0 Index 98h)? 0 = No; 1 = Yes.	ary Hard Disk Idle Tim
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[0].	
dura regi	register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the ation configured in the Idle Timer Count register for that device, causing an SMI. It is called a Mirror re ster exists at F0 Index F5h. Reading this register does not clear the status, while reading its counterp ir the status.	egister since an identic

	Table 4-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)
Bit	Description

Bit	Description	
Index 86h	Second Level Power Management Status Mirror Register 3 (RO) Reset Value	= 001
7	Video Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 82h[7].	
6	Reserved (Read Only)	
5	Secondary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 83h[6].	
4	Secondary Hard Disk Idle Timer SMI Status (Read Only): SMI was caused by expiration of Hard Disk Idle Timer Register (F0 Index ACh)? 0 = No; 1 = Yes.	Coun
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 83h[7].	
3	Keyboard/Mouse Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the keyboard mouse? 0 = No; 1 = Yes.	l or
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 82h[3].	
2	Parallel/Serial Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to either the serial parallel ports? 0 = No; 1 = Yes.	or
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 82h[2].	
1	Floppy Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the floppy disk? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 82h[1].	
0	Primary Hard Disk Access Trap SMI Status (Read Only): SMI was caused by a trapped I/O access to the primary disk? 0 = No; 1 = Yes.	/ har
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset 00h/02h[0].	
	SMI generation enabling is at F0 Index 82h[0].	
devi	s register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access occurred to t vice while the trap was enabled, causing an SMI. It is called a Mirror register since an identical register exists at F0 Inde ading this register does not clear the status, while reading its counterpart at F0 Index F6h does clear the status.	

Index 87h	Description	
	Second Level Power Management Status Mirror Register 4 (RO)	Reset Value = 00h
7	GPIO2 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO2 pin	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset	00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].	
6	GPIO1 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO1 pin	? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset	00h/02h[0].
	SMI generation enabling is at F0 Index 92h[1].	
5	GPIO0 SMI Status (Read Only): SMI was caused by transition on (properly-configured) GPIO0 pin	? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset	00h/02h[0].
	SMI generation enabling is at F0 Index 92h[0].	
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pin switch indicator, this bit reflects the state of the pin.	is configured as the lic
3	Lid Switch SMI Status (Read Only): SMI was caused by a transition on the GPIO6 (lid switch) pin'	? 0 = No; 1 = Yes.
	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index $90h[6] = 0$) and as (F0 Index $92h[6] = 1$).	
2	Codec SDATA_IN SMI Status (Read Only): SMI was caused by AC97 codec producing a positive	edge on SDATA_IN?
	0 = No; 1 = Yes.	u _
	This is the second level of status is reporting. The top level status is reported at F1BAR+Memory O	ffset 00h/02h[0].
	SMI generation enabling is at F0 Index 80h[5].	
1	RTC Alarm (IRQ8) SMI Status (Read Only): SMI was caused by an RTC interrupt? 0 = No; 1 = Yes	S.
	This SMI event can only occur while in 3V Suspend and an RTC interrupt occurs.	
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset	00h/02h[0].
0	ACPI Timer SMI Status (Read Only): SMI was caused by an ACPI Timer MSB toggle? 0 = No; 1 =	Yes.
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory Offset	
	SMI generation configuration is at F0 Index 83h[5].	
Note: Pro	perly-configured means that the GPIO pin must be enabled as a GPIO (if multiplexed pin), an input, a	ind to cause an SMI.
	s register provides status on several miscellaneous power management events that generate SMIs, as	
the	Lid Switch. It is called a Mirror register since an identical register exists at F0 Index F7h. Reading this status, while reading its counterpart at F0 Index F7h does clear the status.	
Index 88h	General Purpose Timer 1 Count Register (R/W)	Reset Value = 00h
7:0	General Purpose Timer 1 Count: This register holds the load value for GP Timer 1. This value car bit or 16-bit timer (selected at F0 Index 8Bh[4]). It is loaded into the timer when the timer is enabled Once enabled, an enabled event (configured in F0 Index 89h[6:0]) reloads the timer.	
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, a the top level SMI status is reported at F1BAR+Memory Offset 00h/02h[9]. The second level SMI sta F1BAR+Memory Offset 04h/06h[0]).	
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new co	
	i Once expired, this timer must be re-initialized by either disabiling and enabling it. Or writing a new co	ount value here.

Bit	Description	
Index 89h	General Purpose Timer 1 Control Register (R/W)	Reset Value = 00h
7	Timebase for General Purpose Timer 1: Selects timebase for GP Timer 1 (F0 Index 88h). 0 = 1 set	c; 1 = 1 msec.
6	Re-trigger General Purpose Timer 1 on User Defined Device 3 (UDEF3) Activity: 0 = Disable; 1 =	= Enable.
	Any access to the configured (memory or I/O) address range for UDEF3 reloads GP Timer 1. UDEF3 programming is at F0 Index C8h (base address register) and CEh (control register).	address
5	Re-trigger General Purpose Timer 1 on User Defined Device 2 (UDEF2) Activity: 0 = Disable; 1 =	= Enable.
	Any access to the configured (memory or I/O) address range for UDEF2 reloads GP Timer 1. UDEF2 programming is at F0 Index C4h (base address register) and CDh (control register).	address
4	Re-trigger General Purpose Timer 1 on User Defined Device 1 (UDEF1) Activity: 0 = Disable; 1 =	
	Any access to the configured (memory or I/O) address range for UDEF1 reloads GP Timer 1. UDEF1 programming is at F0 Index C0h (base address register) and CCh (control register)	address
3	Re-trigger General Purpose Timer 1 on Keyboard or Mouse Activity: 0 = Disable; 1 = Enable	
	Any access to the keyboard or mouse I/O address range (listed below) reloads GP Timer 1. Keyboard Controller: I/O Ports 060h/064h COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is included)	
	COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is included)	
2	Re-trigger General Purpose Timer 1 on Parallel/Serial Port Activity: 0 = Disable; 1 = Enable.	
	Any access to the parallel or serial port I/O address range (listed below) reloads the GP Timer 1. LPT1: I/O Port 378h-37Fh, 778h-77Ah LPT2: I/O Port 278h-27Fh, 678h-67Ah	
	COM1: I/O Port 3F8h-3FFh (if F0 Index 93h[1:0] = 10 this range is excluded) COM2: I/O Port 2F8h-2FFh (if F0 Index 93h[1:0] = 11 this range is excluded) COM3: I/O Port 3E8h-3EFh	
1	COM4: I/O Port 2E8h-2EFh	
I	Re-trigger General Purpose Timer 1 on Floppy Disk Activity: 0 = Disable; 1 = Enable. Any access to the floppy disk drive address ranges (listed below) reloads GP Timer 1.	
	Primary floppy disk: I/O Port 3F2h, 3F4h, 3F5h, and 3F7 Secondary floppy disk: I/O Port 372h, 373h, 375h, and 377h	
	The active floppy drive is configured via F0 Index 93h[7].	
0	Re-trigger General Purpose Timer 1 on Primary Hard Disk Activity: 0 = Disable; 1 = Enable.	
	Any access to the primary hard disk drive address range selected in F0 Index 93h[5] reloads GP Tim	er 1.
Index 8Ah	General Purpose Timer 2 Count Register (R/W)	Reset Value = 00h
7:0	General Purpose Timer 2 Count: This register holds the load value for GP Timer 2. This value can bit or 16-bit timer (configured in F0 Index 8Bh[5]). It is loaded into the timer when the timer is enabled Once the timer is enabled and a transition occurs on GPIO7, the timer is re-loaded.	
	The timer is decremented with each clock of the configured timebase. Upon expiration of the timer, an the top level of status is F1BAR+Memory Offset 00h/02h[9] and the second level of status is reported Offset 04h/06h[1]).	
	Once expired, this timer must be re-initialized by either disabling and enabling it, or writing a new cou	
	For GPIO7 to act as the reload for this timer, it must be enabled as such (F0 Index 8Bh[2]) and be cont Index 90h[7]).	ïgured as an input (F0
	This timer's timebase can be configured as 1 msec or 1 sec in F0 Index 8Bh[3].	

Bit	Description	
Index 8Bh	General Purpose Timer 2 Control Register (R/W)	Reset Value = 00h
7	Re-trigger General Purpose Timer 1 on Secondary Hard Disk Activity: 0 = Disable; 1 = Enabl	е.
	Any access to the secondary hard disk drive address range selected in F0 Index 93h[4] reloads G	P Timer 1.
6	VGA Timer Base: Selects timebase for VGA Timer Register (F0 Index 8Eh). 0 = 1 ms; 1 = 32 µs.	
5	General Purpose Timer 2 Shift: GP Timer 2 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16	β-bit.
	As an 8-bit timer, the count value is loaded into GP Timer 2 Count Register (F0 Index 8Ah).	
	As a 16-bit timer, the value loaded into GP Timer 2 Count Register is shifted left by eight bits, the zero, and this 16-bit value is used as the count for GP Timer 2.	ower eight bits become
4	General Purpose Timer 1 Shift: GP Timer 1 is treated as an 8-bit or 16-bit timer. 0 = 8-bit; 1 = 16	S-bit.
	As an 8-bit timer, the count value is that loaded into GP Timer 1 Count Register (F0 Index 88h).	
	As a 16-bit timer, the value loaded into GP Timer 1 Count Register is shifted left by eight bit, the lo zero, and this 16-bit value is used as the count for GP Timer 1.	ower eight bits become
3	Timebase for General Purpose Timer 2: Selects timebase for GP Timer 2 (F0 Index 8Ah). 0 = 1	sec; 1 = 1 msec.
2	Re-trigger General Purpose Timer 2 on GPIO7 Pin Transition: A configured transition on the GPIO7 pin reloads GF Timer 2 (F0 Index 8Ah). 0 = Disable; 1 = Enable.	
	F0 Index 92h[7] selects whether a rising- or a falling-edge transition acts as a reload. For GPIO7 to configured as an input (F0 Index $90h[7] = 0$).	work here, it must first b
1:0	Reserved: Set to 0.	
Index 8Ch	IRQ Speedup Timer Count Register (R/W)	Reset Value = 00
7:0	IRQ Speedup Timer Count: This register holds the load value for the IRQ speedup timer. It is loaded into the Suspend Modulation is enabled (F0 Index 96h[0] = 1) and an INTR or an access to I/O Port 061h occurs. W occurs, the Suspend Modulation logic is inhibited, permitting full performance operation of the CPU. Upon exp is generated; the Suspend Modulation begins again. The IRQ speedup timer's timebase is 1 ms.	
	This speedup mechanism allows instantaneous response to system interrupts for full-speed interr value here would be 2 to 4 ms.	upt processing. A typica
Index 8Dh	Video Speedup Timer Count Register (R/W)	Reset Value = 00
7:0	Video Speedup Timer Count: This register holds the load value for the Video speedup timer. It is when Suspend Modulation is enabled (F0 Index 96h[0] = 1) and any access to the graphics contro access occurs, the Suspend Modulation logic is inhibited, permitting full-performance operation of tion, no SMI is generated; the Suspend Modulation begins again. The video speedup timer's timet This speedup mechanism allows instantaneous response to video activity for full speed during video vide	ller occurs. When a vide the CPU. Upon expira- pase is 1 ms.
	tiona. A tunical value hare would be E0 to 100 ma	ee preceeding calcula
	tions. A typical value here would be 50 to 100 ms.	oo proceeding calcula
Index 8Eh	VGA Timer Count Register (R/W)	Reset Value = 00
Index 8Eh 7:0		Reset Value = 001 into the timer when the I timebase (F0 Index emory Offset 00h/02h[6 enabling it (F0 Index
	VGA Timer Count Register (R/W) VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded timer is enabled (F0 Index 83h[3] = 1). The timer is decremented with each clock of the configured 8Bh[6]). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+M (only). Once expired, this timer must be re-initialized by disabling it (F0 Index 83h[3] = 0) and then 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in ord	Reset Value = 001 into the timer when the I timebase (F0 Index emory Offset 00h/02h[6 enabling it (F0 Index
	VGA Timer Count Register (R/W) VGA Timer Load Value: This register holds the load value for the VGA timer. The value is loaded timer is enabled (F0 Index 83h[3] = 1). The timer is decremented with each clock of the configured 8Bh[6]). Upon expiration of the timer, an SMI is generated and the status is reported in F1BAR+M (only). Once expired, this timer must be re-initialized by disabling it (F0 Index 83h[3] = 0) and then 83h[3] = 1). When the count value is changed in this register, the timer must be re-initialized in ord loaded.	Reset Value = 001 into the timer when the I timebase (F0 Index emory Offset 00h/02h[6 enabling it (F0 Index er for the new value to b

Index 90h	Description	
	GPIO Pin Direction Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Direction: Selects if GPIO7 is an input or output. 0 = Input; 1 = Output.	
6	GPIO6 Direction: Selects if GPIO6 is an input or output. 0 = Input; 1 = Output.	
5	GPI05 Direction: Selects if GPI05 is an input or output. 0 = Input; 1 = Output.	
4	GPIO4 Direction: Selects if GPIO4 is an input or output. 0 = Input; 1 = Output.	
3	GPIO3 Direction: Selects if GPIO3 is an input or output. 0 = Input; 1 = Output.	
2	GPIO2 Direction: Selects if GPIO2 is an input or output. 0 = Input; 1 = Output.	
1	GPIO1 Direction: Selects if GPIO1 is an input or output. 0 = Input; 1 = Output.	
0	GPIO0 Direction: Selects if GPIO0 is an input or output. 0 = Input; 1 = Output.	
	ral of these pins have specific alternate functions. The direction configured here must be consistent ate function.	nt with the pins' use as the
ndex 91h	GPIO Pin Data Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Data: Reflects the level of GPIO7. 0 = Low; 1 = High.	
6	GPIO6 Data: Reflects the level of GPIO6. 0 = Low; 1 = High.	
5	GPIO5 Data: Reflects the level of GPIO5. 0 = Low; 1 = High.	
4	GPIO4 Data: Reflects the level of GPIO4. 0 = Low; 1 = High.	
3	GPIO3 Data: Reflects the level of GPIO3. 0 = Low; 1 = High.	
2	GPIO2 Data: Reflects the level of GPIO2. 0 = Low; 1 = High.	
1	GPIO1 Data: Reflects the level of GPIO1. 0 = Low; 1 = High.	
0	GPIO0 Data: Reflects the level of GPIO0. 0 = Low; 1 = High.	
	register contains the direct values of GPIO[7:0] pins. Write operations are valid only for bits define egister read the last written value if the pin is an output. The pins are configured as inputs or output.	
ndex 92h	GPIO Control Register 1 (R/W)	Reset Value = 00h
7	GPIO7 Edge Sense for Reload of General Purpose Timer 2: Selects which edge transition of GP Timer 2 to reload. 0 = Rising; 1 = Falling (Note 2).	GPIO7 causes
6	GPIO6 Enabled as Lid Switch: Allow GPIO6 to act as the lid switch input. 0 = GPIO6; 1 = =	witch.
	When enabled, every transition of the GPIO6 pin causes the lid switch status to toggle and gener	rate an SMI.
	The top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 87h/F7h[3].	
	If GPIO6 is enabled as the lid switch, F0 Index 87h/F7h[4] reports the current status of the lid's p	osition.
5	GPIO2 Edge Sense for SMI: Selects which edge transition of the GPIO2 pin generates an SMI. Bit 2 must be set to enable this bit.	0 = Rising; 1 = Falling.
4	GPIO1 Edge Sense for SMI: Selects which edge transition of the GPIO1 pin generates an SMI.	0 = Rising: 1 = Falling.
-	Bit 1 must be set to enable this bit.	e
3	GPIO0 Edge Sense for SMI: Selects which edge transition of the GPIO0 pin generates an SMI.	0 = Rising; 1 = Falling.
	Bit 1 must be set to enable this bit.	
2	Enable GPIO2 as an External SMI Source: Allow GPIO2 to be an external SMI source and gen rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7].	erate an SMI on either a
2	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	
	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3).	erate an SMI on either a
1	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and gen	erate an SMI on either a
0	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and gen rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0].	erate an SMI on either a erate an SMI on either a
1 0 Notes: 1) F	rising or falling edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable (Note 3). Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[7]. Enable GPIO1 as an External SMI Source: Allow GPIO1 to be an external SMI source and gen rising- or falling-edge transition (depends upon setting of bit 4). 0 = Disable; 1 = Enable (Note 3). Top level SMI status reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[6]. Enable GPIO0 as an External SMI Source: Allow GPIO0 to be an external SMI source and gen rising or falling edge transition (depends upon setting of bit 3). 0 = Disable; 1 = Enable (Note 3) Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 87h/F7h[5].	erate an SMI on either a erate an SMI on either a put (F0 Index 90h).

Bit	Description	
Index 93h	Miscellaneous Device Control Register (R/W)	Reset Value = 00h
7	Floppy Drive Port Select: All system resources used to power manage the floppy drive use the addresses for decode. 0 = Primary; 1 = Primary and Secondary.	ne primary or secondary FD
6	Reserved: This bit must always be set to 1.	
5	 Partial Primary Hard Disk Decode: This bit is used to restrict the addresses which are decoded accesses. 0 = Power management monitors all reads and writes I/O Port 1F0h-1F7h, 3F6h 1 = Power management monitors only writes to I/O Port 1F6h and 1F7h 	ded as primary hard disk
4	Partial Secondary Hard Disk Decode: This bit is used to restrict the addresses which are de Disk accesses.	coded as secondary hard
	0 = Power management monitors all reads and writes I/O Port 170h-177h, 376h 1 = Power management monitors only writes to I/O Port 176h and 177h	
3:2	Reserved: Set to 0.	
1	Mouse on Serial Enable: Mouse is present on a serial port. 0 = No; 1 = Yes. (Note)	
0	Mouse Port Select: Selects which serial port the mouse is attached to. 0 = COM1; 1 = COM2	2. (Note)
moi moi	s^{1} 1 and 0 - If a mouse is attached to a serial port (bit 1 = 1), that port is removed from the serial on itor serial port access for power management purposes and added to the keyboard/mouse decuse, along with the keyboard, is considered an input device and is used only to determine when ese bits determine the decode used for the Keyboard/Mouse Idle Timer Count Register (F0 Indec	ode. This is done because to blank the screen.
	Serial Port Idle Timer Count Register (F0 Index 9Ch).	
ndex 94h	Suspend Modulation OFF Count Register (R/W)	Reset Value = 00
7:0	Suspend Signal Deasserted Count: This 8-bit value represents the number of 32 µs interval deasserted to the GX-series processor. This timer, together with the Suspend Modulation ON 95h), perform the Suspend Modulation function for CPU power management. The ratio of the effective (emulated) clock frequency, allowing the power manager to reduce CPU power consult. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are I speedups.	Count Register (FO Index on-to-off count sets up an umption.
ndex 95h		Reset Value = 00
7:0	Suspend Signal Asserted Count: This 8-bit value represents the number of 32 µs intervals t asserted. This timer, together with the Suspend Modulation OFF Count Register (F0 Index 94h ulation function for CPU power management. The ratio of the on-to-off count sets up an effecting quency, allowing the power manager to reduce CPU power consumption. This timer is prematurely reset if an enabled speedup event occurs. The speedup events are I speedups.	n), perform the Suspend Mo ive (emulated) clock fre-
ndex 96h	Suspend Configuration Register (R/W)	Reset Value = 00
ndex 96h 7:5	Suspend Configuration Register (R/W) Reserved: Set to 0.	Reset Value = 00
		Reset Value = 00
7:5	Reserved: Set to 0.	
7:5 4	Reserved: Set to 0. Power Savings Mode: 0 = Enable; 1 = Disable.	ed.
4 3	Reserved: Set to 0. Power Savings Mode: 0 = Enable; 1 = Disable. Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a Configuration of the support powering down a Configu	ed. GX-series processor during
7:5 4 3 2	Reserved: Set to 0. Power Savings Mode: 0 = Enable; 1 = Disable. Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a G Suspend. 0 = Disable; 1 = Enable.	ed. GX-series processor during occurs.
7:5 4 3 2	Reserved: Set to 0. Power Savings Mode: 0 = Enable; 1 = Disable. Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a C Suspend. 0 = Disable; 1 = Enable. SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI 0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Susper	ed. GX-series processor during occurs. nd Modulation when an SM
7:5 4 3 2	Reserved: Set to 0. Power Savings Mode: 0 = Enable; 1 = Disable. Include ISA Clock in Power Savings Mode: 0 = ISA clock not included; 1 = ISA clock include Suspend Mode Configuration: "Special 3 Volt Suspend" mode to support powering down a C Suspend. 0 = Disable; 1 = Enable. SMI Speedup Configuration: Selects how Suspend Modulation function reacts when an SMI 0 = Use the IRQ Speedup Timer Count Register (F0 Index 8Ch) to temporarily disable Susper occurs. 1 = Disable Suspend Modulation when an SMI occurs until a read to the SMI Speedup Disable	ed. GX-series processor during occurs. Ind Modulation when an SM e Register (F1BAR+Memor agement Mode so that VSA shing this are either to map le Suspend Modulation unt atter is the preferred metho

Bit	Description	
Index 97h	GPIO Control Register 2 (R/W)	Reset Value = 00h
7	GPIO7 Edge Sense for SMI: Selects which edge transition of the GPIO7 pin generates an S Bit 3 must be set to enable this bit.	MI. 0 = Rising; 1 = Falling.
6	GPIO5 Edge Sense for SMI: Selects which edge transition of the GPIO5 pin generates an S	MI. 0 = Rising; 1 = Falling.
	Bit 2 must be set to enable this bit.	
5	GPIO4 Edge Sense for SMI: Selects which edge transition of the GPIO4 pin generates an S Bit 1 must be set to enable this bit.	MI. 0 = Rising; 1 = Falling.
4	GPIO3 Edge Sense for SMI: Selects which edge transition of the GPIO3 pin generates an S Bit 0 must be set to enable this bit.	MI. 0 = Rising; 1 = Falling.
3	Enable GPIO7 as an External SMI Source: Allow GPIO7 to be an external SMI source and trising or falling edge transition (depends upon setting of bit 7). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[3].	o generate an SMI on either a
2	Enable GPIO5 as an External SMI Source: Allow GPIO5 to be an external SMI source and t rising or falling edge transition (depends upon setting of bit 6). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[2].	o generate an SMI on either a
1	Enable GPIO4 as an External SMI Source: Allow GPIO4 to be an external SMI source and t rising- or falling-edge transition (depends upon setting of bit 5). 0 = Disable; 1 = Enable. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[1].	o generate an SMI on either a
0	Enable GPIO3 as an External SMI Source: Allow GPIO3 to be an external SMI source and t rising or falling edge transition (depends upon setting of bit 4) 0 = Disable; 1 = Enable.	o generate an SMI on either a
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status reporting is at F0 Index 84h/F4h[0].	
Note: For	any of the above bits to function properly, the respective GPIO pin must be configured as an in	put (F0 Index 90h).
Index 98h-	99h Primary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Primary Hard Disk Idle Timer Count: The idle timer loaded from this register is used to deter disk is not in use so that it can be powered down. The 16-bit value programmed here represe disk inactivity after which the system is alerted via an SMI. The timer is automatically reloade ever an access occurs to the configured primary hard disk's data port (configured in F0 Index second timebase. To enable this timer set F0 Index 81h[0] = 1.	nts the period of primary hard d with the count value when-
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[0].	
Index 9Ah	Second level SMI status is reported at F0 Index 85h/F5h[0].	Reset Value = 0000h
Index 9Ah 15:0	Second level SMI status is reported at F0 Index 85h/F5h[0].	when the floppy disk drive is period of floppy disk drive the count value whenever an
	Second level SMI status is reported at F0 Index 85h/F5h[0]. 9Bh Floppy Disk Idle Timer Count Register (R/W) Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determine not in use so that it can be powered down. The 16-bit value programmed here represents the inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 375h timer uses a 1 second timebase.	when the floppy disk drive is period of floppy disk drive the count value whenever an
	Second level SMI status is reported at F0 Index 85h/F5h[0]. 9Bh Floppy Disk Idle Timer Count Register (R/W) Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determine not in use so that it can be powered down. The 16-bit value programmed here represents the inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 375h timer uses a 1 second timebase. To enable this timer set F0 Index 81h[1] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	when the floppy disk drive is period of floppy disk drive the count value whenever an
15:0	Second level SMI status is reported at F0 Index 85h/F5h[0]. 9Bh Floppy Disk Idle Timer Count Register (R/W) Floppy Disk Idle Timer Count: The idle timer loaded from this register is used to determine not in use so that it can be powered down. The 16-bit value programmed here represents the inactivity after which the system is alerted via an SMI. The timer is automatically reloaded with access occurs to any of I/O Ports 3F2h, 3F4h, 3F5h, and 3F7h (primary) or 372h, 374h, 375h timer uses a 1 second timebase. To enable this timer set F0 Index 81h[1] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[1].	when the floppy disk drive is period of floppy disk drive the count value whenever an a, and 377h (secondary). The Reset Value = 0000h he when the parallel and serial here represents the period of Ily reloaded with the count

Bit	Description	
ndex 9Eh	9Fh Keyboard / Mouse Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Keyboard / Mouse Idle Timer Count: The idle timer loaded from this register determines are not in use so that the LCD screen can be blanked. The 16-bit value programmed here if for these ports after which the system is alerted via an SMI. The timer is automatically rela- ever an access occurs to either the keyboard or mouse I/O address spaces, including the when a mouse is enabled on a serial port. The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[3] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[3].	represents the period of inactivity baded with the count value when
ndex A0h	A1h User Defined Device 1 Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	User Defined Device 1 (UDEF1) Idle Timer Count: The idle timer loaded from this regist configured as UDEF1 is not in use so that it can be power managed. The 16-bit value prog period of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at F0 ter) and F0 Index CCh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[4] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[4].	grammed here represents the automatically reloaded with the
ndex A2h		Reset Value = 0000h
15:0	User Defined Device 2 (UDEF2) Idle Timer Count: The idle timer loaded from this regist configured as UDEF2 is not in use so that it can be power managed. The 16-bit value prog period of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at F0 ter) and F0 Index CDh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[5] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[5].	grammed here represents the automatically reloaded with the
ndex A4h		Reset Value = 0000h
15:0	User Defined Device 3 (UDEF3) Idle Timer Count: The idle timer loaded from this regist configured as UDEF3 is not in use so that it can be power managed. The 16-bit value prog period of inactivity for this device after which the system is alerted via an SMI. The timer is count value whenever an access occurs to memory or I/O address space configured at F0 ter) and F0 Index CEh (control register). The timer uses a 1 second timebase. To enable this timer set F0 Index 81h[6] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[6].	grammed here represents the automatically reloaded with the
ndex A6h	A7h Video Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	Video Idle Timer Count: The idle timer loaded from this register determines when the grap part of the Suspend determination algorithm. The 16-bit value programmed here represent after which the system is alerted via an SMI. The count in this timer is automatically reset wigraphics controller space. The timer uses a 1 second timebase. In a GX-series processor based system the graphics controller is embedded in the CPU, s to the CS5530A via the serial connection (PSERIAL register, bit 0) from the processor. The to standard VGA space on PCI (3Bxh, 3Cxh, 3Dxh and A000h-B7FFh) in the event an exter To enable this timer set F0 Index 81h[7] = 1. Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[0]. Second level SMI status is reported at F0 Index 85h/F5h[7].	ts the period of video inactivity whenever an access occurs to th to video activity is communicated CS5530A also detects accesse
ndex A8h	A9h Video Overflow Count Register (R/W)	Reset Value = 0000h
15:0	Video Overflow Count: Each time the Video Speedup timer (F0 Index 8Dh) is triggered, a 100 ms timer expires before the Video Speedup timer lapses, the Video Overflow Count R ms timer re-triggers. Software clears the overflow register when new evaluations are to be	egister increments and the 100 gin. The count contained in this
	register may be combined with other data to determine the type of video accesses present	t in the system.

	Description		
Index AC	ı-ADh	Secondary Hard Disk Idle Timer Count Register (R/W)	Reset Value = 0000h
15:0	hard disk is not in ary hard disk inact whenever an acce uses a 1 second ti To enable this time Top level SMI state	Disk Idle Timer Count: The idle timer loaded from this register is used to use so that it can be powered down. The 16-bit value programmed here r ivity after which the system is alerted via an SMI. The timer is automatical ss occurs to the configured secondary hard disk's data port (configured in mebase. er set F0 Index 83h[7] = 1. us is reported at F1BAR+Memory Offset 00h/02h[0]. status is reported at F0 Index 86h/F6h[4].	epresents the period of second ly reloaded with the count value
Index AEr		CPU Suspend Command Register (WO)	Reset Value = 00h
7:0	0) and all SMI stat in a low-power sta dition. If F0 Index BCh[0] the SUSP#/SUSP/ allowing the clock	spend Command (Write Only): If bit 0 in the Clock Stop Control Register us bits are 0, a write to this register causes a SUSP#/SUSPA# handshake te. The data written is irrelevant. Once in this state, any unmasked IRQ or = 1, writing to this register invokes a full system Suspend. In this case, the A# halt. Upon a Resume event (see Note), the PLL delay programmed in the chip and CPU PLL to stabilize before deasserting the SUSP# pin.	e with the CPU, placing the CPU SMI releases the CPU halt cor SUSP_3V pin is asserted afte the F0 Index BCh[7:4] is invoked
	only IRQ pi source (F0 up the syst	s are stopped, the external IRQ4 and IRQ3 pins, when enabled (F3BAR+M ns that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 a Index 92h[2:0]), they too can be used as a Resume event. No other CS5 em from Suspend when the clocks are stopped. As long as the 32 KHz clo also Resume events.	re enabled as an external SMI 530A pins can be used to wake
Index AFh	1	Suspend Notebook Command Register (WO)	Reset Value = 00h
7:0	CPU, placing the C intended to be use Upon a Resume e	DP Clock Suspend (Write Only): A write to this register causes a SUSP CPU in a low-power state. Following this handshake, the SUSP_3V pin is do to stop all system clocks. vent (see Note), the SUSP_3V pin is deasserted. After a slight delay, the	asserted. The SUSP_3V pin is CS5530A deasserts the SUSP#
	Note: If the clocks only IRQ pi source (F0	locks are stable, the processor deasserts SUSPA# and system operation s are stopped the external IRQ4 and IRQ3 pins, when enabled (F3BAR+M ns that can be used as a Resume event. If GPIO2, GPIO1, and GPIO0 a Index 92h[2:0]), they too can be used as a Resume event. No other CS5	lemory Offset 1Ah[4:3]), are the re enabled as an external SMI
	up the syst	em from Suspend when the clocks are stopped.	530A pins can be used to wake
Index B0h			530A pins can be used to wake Reset Value = xxh
	-B3h	em from Suspend when the clocks are stopped.	
	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in register	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF
Index B4h 7:0	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation.	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when
Index B0h Index B4h 7:0 Index B5h 7:0	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh
ndex B4h 7:0 ndex B5h	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein Floppy Port 3F7h and Save-to-Disk/ This register is a c	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF
ndex B4h 7:0 ndex B5h 7:0	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein Floppy Port 3F7h and Save-to-Disk/ This register is a c the register is bein	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in registe g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in register pop of an I/O register which cannot safely be directly read. Value in register opy of an I/O register which cannot safely be directly read. Value in register	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF
Index B4h 7:0 Index B5h	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein Floppy Port 3F7h and Save-to-Disk/ This register is a c the register is bein Floppy Port 1F2h and Save-to-Disk/	Reserved Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 1F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 1F2h. Required for RAM coherency.	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF
ndex B4h 7:0 ndex B5h 7:0 ndex B6h	-B3h Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein Floppy Port 3F7h and Save-to-Disk/ This register is a c the register is bein Floppy Port 1F2h and Save-to-Disk/ This register is a c	em from Suspend when the clocks are stopped. Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 1F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 1F2h. Required for RAM coherency. Opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 1F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 1F2h. Required for	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF
Index B4h 7:0 Index B5h 7:0	 Floppy Port 3F2h and Save-to-Disk/ This register is a c the register is bein Floppy Port 3F7h and Save-to-Disk/ This register is a c the register is bein Floppy Port 1F2h and Save-to-Disk/ This register is a c the register is bein 	Reserved Reserved Floppy Port 3F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 3F7h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 1F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 3F7h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist g read. It is provided here to assist in a Save-to-Disk operation. Floppy Port 1F2h Shadow Register (RO) Shadow (Read Only): Last written value of I/O Port 1F2h. Required for RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist port of RAM coherency. opy of an I/O register which cannot safely be directly read. Value in regist	Reset Value = xxh Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF ter is not deterministic of when Reset Value = xxh support of FDC power ON/OFF

Bit	Description	
ndex B8h	DMA Shadow Register (RO)	Reset Value = xxl
7:0	 DMA Shadow (Read Only): This 8-bit port sequences through the following list of shadower power on, a pointer starts at the first register in the list and consecutively reads incrementally ister resets the read sequence to the first register. Each shadow register in the sequence conthat location. The read sequence for this register is: DMA Channel 0 Mode Register DMA Channel 1 Mode Register DMA Channel 2 Mode Register DMA Channel 3 Mode Register DMA Channel 4 Mode Register DMA Channel 5 Mode Register DMA Channel 6 Mode Register DMA Channel 7 Mode Register DMA Channel 7 Mode Register 	y through it. A write to this rea
ndex B9h	PIC Shadow Register (RO)	Reset Value = xx
7:0	 PIC Shadow (Read Only): This 8-bit port sequences through the following list of shadowed troller registers. At power on, a pointer starts at the first register in the list and consecutively A write to this register resets the read sequence to the first register. Each shadow register in data written to that location. The read sequence for this register is: PIC1 ICW1 PIC1 ICW2 PIC1 ICW3 PIC1 ICW3 PIC1 ICW3 - Bits [7:5] of ICW4 are always 0 PIC1 OCW2 - Bits [6:3] of OCW2 are always 0 (Note) PIC1 OCW3 - Bits [7, 4] are 0 and bit [6, 3] are 1 PIC2 ICW1 PIC2 ICW3 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 ICW4 PIC3 ICW4 - Bits [7:5] of ICW4 are always 0 PIC2 ICW3 PIC2 ICW3 PIC2 ICW3 PIC2 ICW3 - Bits [7:4] are 0 and bit [6, 3] are 1 PIC2 OCW3 - Bits [7:4] are 0 and bit [6, 3] are 1 PIC2 OCW3 - Bits [7:4] are 0 and bit [6, 3] are 1 	reads incrementally through the sequence contains the la
ndex BAh	then with the shadow register value ORed with C0h. PIT Shadow Register (RO)	Reset Value = xxl
7:0	PIT Shadow (Read Only): This 8-bit port sequences through the following list of shadowed registers. At power on, a pointer starts at the first register in the list and consecutively reads to this register resets the read sequence to the first register. Each shadow register in the securite no that location. The read sequence for this register is: 1. Counter 0 LSB (least significant byte) 2. Counter 0 MSB 3. Counter 1 LSB 4. Counter 1 MSB 5. Counter 2 LSB 6. Counter 2 MSB 7. Counter 0 Command Word 8. Counter 1 Command Word 9. Counter 2 Command Word 9. Counter 2 Command Word	to increment through it. A wri
	Bits [7:6] of the command words are not used.	
ndex BBh	RTC Index Shadow Register (RO)	Reset Value = xx
7:0	RTC Index Shadow (Read Only): The RTC Shadow register contains the last written value register (I/O Port 070h).	of the RTC Index

Bit	Description			
Index BCh	I	Clock Stop Cont	rol Register (R/W)	Reset Value = 00h
7:4	pin is deasserted t tion. This delay is		to allow the clock chip and CP	a break event occurs before the SUSP# U PLL to stabilize before starting execu 1100 = 12 ms 1101 = 13 ms
	0010 = 2 ms	0110 = 6 ms	1010 = 10 ms	1110 = 14 ms
2.1	0011 = 3 ms Reserved: Set to	0111 = 7 ms	1011 = 11 ms	1111 = 15 ms
3:1 0		0. 0 = Normal SUSP#/ SUSPA# hand	lehake: 1 - Full system Susner	nd
cloc A w 0 = brea	k chip and CPU PL rite to the CPU Sus SUSP#/SUSPA# ha ak/resume event occ	L to stabilize when an event Resum pend Command Register (F0 Index andshake occurs. The CPU is put ir curs, it releases the CPU halt condi	hes the system. (AEh) with bit 0 written as: (to a low-power state, and the st tion.	ele (bits 7:4) to allow for a delay for the system clocks are not stopped. When a a full system Suspend (both CPU and
syst	tem clocks are stopp		ne SUSP_3V pin will deassert,	the PLL delay programmed in bits [7:4
Index BDh	-BFh	Res	erved	Reset Value = xxh
Index C0h	-C3h	User Defined Device 1 Ba	ise Address Register (R/W)	Reset Value = 00000000h
31:0				ts power management (trap and idle
		rap/timer logic. The device can be i		vritten is used as the address compara- ured in F0 Index CCh).
Index C4h	tor for the device t	rap/timer logic. The device can be r		
Index C4h 31:0	tor for the device t -C7h User Defined Dev timer resources) fo	rap/timer logic. The device can be i User Defined Device 2 Ba rice 2 (UDEF2) Base Address [31	nemory or I/O mapped (config ase Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v	ured in F0 Index CCh). Reset Value = 00000000h ts power management (trap and idle written is used as the address compara
	tor for the device t -C7h User Defined Dev timer resources) for tor for the device t	rap/timer logic. The device can be r User Defined Device 2 Ba rice 2 (UDEF2) Base Address [31 or a PCMCIA slot or some other de rap/timer logic. The device can be r	nemory or I/O mapped (config ase Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v	ured in F0 Index CCh). Reset Value = 00000000h ts power management (trap and idle written is used as the address compara-
31:0	tor for the device t -C7h User Defined Dev timer resources) fo tor for the device t -CBh User Defined Dev timer resources) fo	rap/timer logic. The device can be i User Defined Device 2 Ba vice 2 (UDEF2) Base Address [31 or a PCMCIA slot or some other de rap/timer logic. The device can be i User Defined Device 3 Ba vice 3 (UDEF3) Base Address [31	nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v	ured in F0 Index CCh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address compara ured in F0 Index CDh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address compara
31:0 ndex C8h	tor for the device t -C7h User Defined Dev timer resources) fo tor for the device t -CBh User Defined Dev timer resources) fo tor for the device t	rap/timer logic. The device can be r User Defined Device 2 Ba rice 2 (UDEF2) Base Address [31 or a PCMCIA slot or some other der rap/timer logic. The device can be r User Defined Device 3 Ba rice 3 (UDEF3) Base Address [31 or a PCMCIA slot or some other der rap/timer logic. The device can be r	nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v	ured in F0 Index CCh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address compara- ured in F0 Index CDh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address compara-
31:0 ndex C8h 31:0	tor for the device t -C7h User Defined Devices timer resources) for tor for the device t -CBh User Defined Devices timer resources) for tor for the device to	rap/timer logic. The device can be r User Defined Device 2 Ba rice 2 (UDEF2) Base Address [31 or a PCMCIA slot or some other der rap/timer logic. The device can be r User Defined Device 3 Ba rice 3 (UDEF3) Base Address [31 or a PCMCIA slot or some other der rap/timer logic. The device can be r	nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v nemory or I/O mapped (config ise Address Register (R/W) :0]: This 32-bit register suppor vice in the system. The value v nemory or I/O mapped (config Control Register (R/W)	ured in F0 Index CCh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address comparatured in F0 Index CDh). Reset Value = 00000000h ts power management (trap and idle vritten is used as the address comparatured in F0 Index CDh). transfer to the tran

Geode[™] CS5530A

7 Memory or I/O Mapped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bit is ignored for comparison. Index CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6:0 = Enable read cycle tracking 1 = Enable write cycle tracking Bit 5:0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 If bit 7 = 1 (M/IO): Bit 6:0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 = Enable write cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bit is ignored for comparison. Index CFh Reserved Reset Value = xo Index CFh Reset Value = xo Reset Value = xo Index CFh Reset SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Index DDh	7 Memory or I/O Mapped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6:0 = Disable write cycle tracking 1 = Enable write cycle tracking Bits 4:0 Bit 6:0 = Disable write cycle tracking Bits 4:0 1 = Enable write cycle tracking Bits 4:0 Disable read cycle tracking Bits 4:0 Bit 6:0 a disk for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Bit 6 n address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Reserved Reset Value = xx ndex CFh Reserved Reset Value = xx Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex DDh Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx ndex DDh Software SMI Register (R/W) Reset Value = xz	7 Memory or I/O Mapped: User Defined Device 2 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 * 0 Disable read cycle tracking Bit 5 * 0 Bit 5 * 0 Bit 5 * 0 Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (MIO): Bits 6:0 Mask for address bit is ignored for comparison. Note: A *1* in a mask bit means that the address bit is ignored for comparison. Note: A *1* in a mask bit means that the address bit is ignored for comparison. * Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Bit 6 0 = Disable write cycle tracking 8:0 D = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking 8:15 0 = Disable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 8:16 0 = Disable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking 1 = Enable	7	Memory or I/O Mapped: User Defined Device 2 is: 0 = I/O; 1 = Memory. Mask	Reset Value = 00
6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking Bit 5 ± 0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bit 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 Bit 5 0 = Disable write cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xt Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xt Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that t	6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5 = 0 Bit 5 0 = Disable read cycle tracking Bit 5 = 0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 8:0 D = Disable write cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5 9 If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bits A[4:0] 1f bit 7 = 1 (M/IO): Bits 6:0 Mask for address bits A[4:0] 1f bit 7 = 1 (M/IO): Bits 6:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xx addres D0h 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. ndex D0h Software SMI Register (R/W) Reset Value = xx addres C	6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 4:0 Bit 5 0 = Disable read cycle tracking Bit 4:10 Bit 5:0 Pask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable write cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 6:0 Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xx ndex D0h Software SMI Register (WO) Reset Value = x rod Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. ndex D1h Reserved Reset Value = xx ndex D1h-EBh Reserved Reset Value = x <th></th> <th>Mask</th> <th></th>		Mask	
If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 = 1 (MIO): Bits 4:0 Bit 5 = 0 Mask for address bits A[4:0] If bit 7 = 1 (MIO): Bits 6:0 Bit 6 = 0 Disable read cycle tracking Bit 7 = 0 (I/O): Bits 6:0 Bit 6 = 0 Disable read cycle tracking Remory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking Bit 5:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xit Note: A "1" in a	If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5 = 0 Disable read cycle tracking Bit 5 = 0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CEb User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 1 (M/IO): Bit 6 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xx <	If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0. Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 : 0 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 : 0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that	6:0		
Bit 6 0 = Disable write cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable verice cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking 2 = 0 Note: A "1" in a mask bit means that the address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFh Reserved Reset Value = xi Note: A "1" in a mask bit means that the address SMI Register (WO) Reset Value = xi 7.0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via	Bit 6 0 = Disable write cycle tracking 1 = Enable erad cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFI Reserved Reset Value = xx ndex CFI Reserved Reset Value = xx ndex DDh Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. <tr< td=""><td>Bit 6 0 = Disable write cycle tracking 1 = Enable erad cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFI Reserved Reset Value = xx ndex CFI Reserved Reset Value = xx ndex DDh Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. <tr< td=""><td></td><td>If bit $7 = 0$ (I/Ω):</td><td></td></tr<></td></tr<>	Bit 6 0 = Disable write cycle tracking 1 = Enable erad cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. ndex CFI Reserved Reset Value = xx ndex CFI Reserved Reset Value = xx ndex DDh Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. <tr< td=""><td></td><td>If bit $7 = 0$ (I/Ω):</td><td></td></tr<>		If bit $7 = 0$ (I/ Ω):	
Image: style in the image: style im	Image: style in the image is therealy the image is therealy the image is the i	Image: style in the image is therealy the image is therealy the image is the i			
Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Index CEb User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6:0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 = Disable read cycle tracking Bit 5:0 = Disable read cycle tracking Bit 6:0 = Disable read cycle tracking Bit 6:0 = Reset Value = 00 Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Reset Value = xx rdex DDh Software SMI Register (WO) Reset Value = xx Reset Value = xx rdex DDh Software SMI Register (R/W) Reset Value = xx Reset Value = xx rdex ECF Timer Test Register is intended only for test and debug purposes. It is not intended for setting or ational timebases. Reset Value = xx	Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Index CEb User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Mask If bit 7 = 0 (I/O): Bit 6:0 Disable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 Bit 5:0 Disable read cycle tracking Bit 6:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Bits 6:0 Mask for address bit is ignored for comparison. Reset Value = xx Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 Reset Value = 00 Reset Value = xx rdx Dbh Software SMI Register (WO) Reset Value = xx Reset Value = xx Reset Value = xx rdx ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases. Reset Value = 00 <	Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Index CEb User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 7 Mask If bit 7 = 0 (I/O): Bit 6:0 Disable write cycle tracking 1 = Enable write cycle tracking Bit 5:0 Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 Bit 5:0 Disable read cycle tracking Bit 6:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Bits 6:0 Mask for address bit is ignored for comparison. Reset Value = xx Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 Reset Value = 00 Reset Value = xx rdx Dbh Software SMI Register (WO) Reset Value = xx Reset Value = xx Reset Value = xx rdx ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases. Reset Value = 00 <			
1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or V/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking 1 = Enable read cycle tracking Bits 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex DDh Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting or ational timebases.	1 = Enable read cycle tracking Bits 4:0 Nask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking Bits 5:0 D = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex DDh Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. dex DDh Software SRE Register (R/W) Reset Value = xx dex ECL Timer Test Register is intended only for test and debug purposes. It is not in	1 = Enable read cycle tracking Bits 4:0 Nask for address bits A[4:0] If bit 7 = 1 (M/O): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking Bits 5:0 D = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex DDh Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. dex DDh Software SRE Register (R/W) Reset Value = xx dex ECL Timer Test Register is intended only for test and debug purposes. It is not in			
If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = x0 Mdex CFh Reserved Reset Value = x0 Mdex DDh Software SMI Register (R/W) Reset Value = x0 r:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This r	If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6:0 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bits 4:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructi	If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 6:0 Mask If bit 7 = 0 (I/O): Bit 6:0 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bits 4:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructi		, ,	
Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xt dex D0h Software SMI Register (WO) Reset Value = xt of 20h Software SMI Register (WO) Reset Value = xt software entry into SMM via normal bus access instructions. Reset Value = xt dex ECh Reserved Reset Value = xt dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting or ational timebases.	Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking Bits 5:0 Bit 5 0 = Disable vrite cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bit 6:0 Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = xx software entry into SMM via normal bus access instructions. Software entry into SMM via normal bus access instructions. dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable read cycle tracking Bits 5:0 Bit 5 0 = Disable vrite cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bit 6:0 Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = xx software entry into SMM via normal bus access instructions. Software entry into SMM via normal bus access instructions. dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.			
Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Image: Control Register (R/W) Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking Image: Control Register (R/W) Image: Control Register (R/W) 8:0 Mask If bit 7 = 0 (I/O): Bit 5 0 = Disable write cycle tracking Image: Control Register (R/W) Image: Control Register (R/W) 8:0 Is to 0 = Disable write cycle tracking Bit 5 0 = Disable read cycle tracking Image: Control Register (R/W) Image: Control Register (R/W) 8:15 0 = Disable read cycle tracking Bit 6:0 Image: Control Register (R/W) Image: Control Register (R/W) 8:16 1 = Enable read cycle tracking Bit 6:0 Image: Control Register (R/W) Reset Value = xo 9:17:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xo 17:0 Software SMI (Write Only): A write to this location generates an debug purposes. It is not intended for setting or ational tim	Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Image: Control Register (R/W) Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking Image: Control Register (R/W) Reset Value = 00 8:0 J = Enable write cycle tracking 1 = Enable write cycle tracking Image: Control Register (R/W) Reset Value = 00 Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking Image: Control Register (R/W) Reset Value = 00 Bits 4:0 Mask for address bits A[14:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bit A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex D0h Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not	Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. Image: Control Register (R/W) Reset Value = 00 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking Image: Control Register (R/W) Reset Value = 00 8:0 J = Enable write cycle tracking 1 = Enable write cycle tracking Image: Control Register (R/W) Reset Value = 00 Bit 5 0 = Disable read cycle tracking 1 = Enable write cycle tracking Image: Control Register (R/W) Reset Value = 00 Bits 4:0 Mask for address bits A[14:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address bit A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex D0h Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not			
dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 5:0 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bit 6:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register i	dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable ead cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable ead cycle tracking Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex DOh Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	dex CEh User Defined Device 3 Control Register (R/W) Reset Value = 00 7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable ead cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable ead cycle tracking Bits 4:0 Mask for address bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx dex DOh Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.) and A[8:0] are ignored.
7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bit 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.	7 Memory or I/O Mapped: User Defined Device 3 is: 0 = I/O; 1 = Memory. 6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 = Enable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bit 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.	dex CFh		Reset Value = 00
6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved dex D0h Software SMI Register (WO) 7:0 Software entry into SMM via normal bus access instructions. dex ECh Reserved Reset Value = x2 dex ECh Timer Test Register (R/W) Reset Value = x2 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.	6:0 Mask If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software entry into SMM via normal bus access instructions. Reset Value = xx dex ECh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.			Neset value - oo
If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved dex D0h Software SMI Register (WO) 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting optiational timebases.	If bit 7 = 0 (I/O): Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking 1 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking 1 Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bit 5 0 = Disable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = xx dex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting optiational timebases.			
Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx dex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.	Bit 6 0 = Disable write cycle tracking 1 = Enable write cycle tracking Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting oprational timebases.			
Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx idex CFh Reserved Reset Value = xx idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx idex D1h-EBh Reserved Reset Value = xx idex ECh Timer Test Register (R/W) Reset Value = xx idex ECh Timer Test Register (R/W) Reset Value = xx idex ECh Timer Test Register (R/W) Reset Value = xx idex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Ask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = xx Idex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op-ational timebases.	Bit 5 0 = Disable read cycle tracking 1 = Enable read cycle tracking Bits 4:0 Ask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = xx Idex ECh Timer Test Register is intended only for test and debug purposes. It is not intended for setting op-ational timebases.		Bit 6 0 = Disable write cycle tracking	
1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	1 = Enable read cycle tracking Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx dex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx dex D1h-EBh Reserved Reset Value = xx dex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.		· •	
Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Note: A "1" in a mask bit means that the address bit is ignored for comparison. dex CFh Reserved Reset Value = xx idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx dex D1h-EBh Reserved Reset Value = xx idex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reserved Reset Value = xx Idex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Bits 4:0 Mask for address bits A[4:0] If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reserved Reset Value = xx Idex CFh Reserved Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.			
If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	If bit 7 = 1 (M/IO): Bits 6:0 Mask for address memory bits A[15:9] (512 bytes min. and 64 KB max.) and A[8:0] are ignored. Note: A "1" in a mask bit means that the address bit is ignored for comparison. Reset Value = xx Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.			
Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = xx 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases. Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases. Time Test value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Note: A "1" in a mask bit means that the address bit is ignored for comparison. Idex CFh Reserved Reset Value = xx Idex D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx Idex D1h-EBh Reserved Reset Value = xx Reset Value = xx Idex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases. Time Test value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.			
Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting or ational timebases.	Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	Index CFh Reserved Reset Value = xx Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reserved Reset Value = xx Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.) and A[8:0] are ignored.
Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. Reset Value = 00 ndex D1h-EBh Reserved Reset Value = xx ndex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. The data written is irrelevant. This register allows access instructions. Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	Index D0h Software SMI Register (WO) Reset Value = 00 7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. The data written is irrelevant. This register allows access instructions. Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.		Note: A "1" in a mask bit means that the address bit is ignored for comparison.	
7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. ndex D1h-EBh Reserved Reset Value = xx ndex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. ndex D1h-EBh Reserved Reset Value = xx ndex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	7:0 Software SMI (Write Only): A write to this location generates an SMI. The data written is irrelevant. This register allows software entry into SMM via normal bus access instructions. ndex D1h-EBh Reserved Reset Value = xx ndex ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	ndex CFh	Reserved	Reset Value = xx
software entry into SMM via normal bus access instructions. Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	software entry into SMM via normal bus access instructions. Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	software entry into SMM via normal bus access instructions. Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	ndex D0h		
Index D1h-EBh Reserved Reset Value = xx Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	Index D1h-EBh Reserved Reserved Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	Index D1h-EBh Reserved Reserved Index ECh Timer Test Register (R/W) Reset Value = 00 7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	7:0		relevant. This register allows
7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting op ational timebases.	7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	7:0 Timer Test Value: The Timer Test Register is intended only for test and debug purposes. It is not intended for setting operational timebases.	ndex D1h-	EBh Reserved	Reset Value = xx
ational timebases.	ational timebases.	ational timebases.	ndex ECh	Timer Test Register (R/W)	Reset Value = 00
ndex EDh-F3h Reserved Reset Value = xx	ndex EDh-F3h Reserved Reset Value = xx	ndex EDh-F3h Reserved Reset Value = xx	7:0		is not intended for setting ope
			dex EDh-	F3h Reserved	Reset Value = xx

Bit	Description
Index F4h	Second Level Power Management Status Register 1 (RC) Reset Value = 00h
7:5	Reserved
4	Game Port SMI Status (Read to Clear): SMI was caused by a R/W access to game port (I/O Port 200h and 201h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	Game Port Read SMI generation enabling is at F0 Index 83h[4]. Game Port Write SMI generation enabling is at F0 Index 53h[3].
3	GPIO7 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO7 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[3].
2	GPIO5 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO5 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[2].
1	GPIO4 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO4 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[1].
0	GPIO3 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO3 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 97h[0].
Note: Prop	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SMI.
	register provides status on various power-management SMI events. Reading this register clears the SMI status bits. A read- (mirror) version of this register exists at F0 Index 84h.

Bit	Description	
Index F5h	Second Level Power Management Status Register 2 (RC)	Reset Value = 00
7	Video Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Video Idle Tir (F0 Index A6h)? 0 = No; 1 = Yes.	ner Count Register
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[7].	
6	User Defined Device 3 (UDEF3) Idle Timer SMI Status (Read to Clear): SMI was caused by exp Timer Count Register (F0 Index A4h)? 0 = No; 1 = Yes.	iration of the UDEF3 Id
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[6].	
5	User Defined Device 2 (UDEF2) Idle Timer SMI Status (Read to Clear): SMI was caused by exp Timer Count Register (F0 Index A2h)? 0 = No; 1 = Yes.	iration of the UDEF2 Id
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[5].	
4	User Defined Device 1 (UDEF1) Idle Timer SMI Status (Read to Clear): SMI was caused by exp Timer Count Register (F0 Index A0h)? 0 = No; 1 = Yes.	iration of the UDEF1 Id
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[4].	
3	Keyboard/Mouse Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the K	eyboard/Mouse Idle
	Timer Count Register (F0 Index 9Eh)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[3].	
2	Parallel/Serial Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Para Count Register (F0 Index 9Ch)? 0 = No; 1 = Yes.	llel/Serial Port Idle Time
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[2].	
1	Floppy Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Floppy Register (F0 Index 9Ah)? 0 = No; 1 = Yes.	Disk Idle Timer Count
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	t 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[1].	
0	Primary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Timer Count Register (F0 Index 98h)? 0 = No; 1 = Yes.	Primary Hard Disk Idle
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 81h[0].	
Note: This	register provides status on the Device Idle Timers to the SMI handler. A bit set here indicates that the tion configured in the Idle Timer Count register for that device, causing an SMI. Reading this register A read-only (mirror) version of this register exists at F0 Index 85h. If the value of the register must be	er clears the SMI status

Bit	Description
Index F6h	Second Level Power Management Status Register 3 (RC) Reset Value = 00h
7	Video Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the Video I/O Trap? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[7].
6	Reserved (Read Only)
5	Secondary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the secondary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[6].
4	Secondary Hard Disk Idle Timer SMI Status (Read to Clear): SMI was caused by expiration of the Hard Disk Idle Timer Count Register (F0 Index ACh)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 83h[7].
3	Keyboard/Mouse Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the keyboard or mouse? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[3].
2	Parallel/Serial Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to either the serial or parallel ports? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[2].
1	Floppy Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the floppy disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0]. SMI generation enabling is at F0 Index 82h[1].
0	Primary Hard Disk Access Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the primary hard disk? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[0].
	SMI generation enabling is at F0 Index 82h[0].
devi of th	register provides status on the Device Traps to the SMI handler. A bit set here indicates that an access occurred to the ce while the trap was enabled, causing an SMI. Reading this register clears the SMI status bits. A read-only (mirror) versio his register exists at F0 Index 86h. If the value of the register must be read without clearing the SMI source (and consequent sserting SMI), F0 Index 86h may be read instead.

Table 4-15. F0 Index xxh: PCI Header and Bridge Configuration Registers (Continued)

Bit	Description	
Index F7h	Second Level Power Management Status Register 4 (RO/RC)	Reset Value = 00
7	GPIO2 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	2 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[2].	
6	GPIO1 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	1 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[1].	
5	GPIO0 SMI Status (Read to Clear): SMI was caused by transition on (properly-configured) GPIO	0 pin? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation enabling is at F0 Index 92h[0].	
4	Lid Position (Read Only): This bit maintains the current status of the lid position. If the GPIO6 pir switch indicator, this bit reflects the state of the pin.	n is configured as the li
3	Lid Switch SMI Status (Read to Clear): SMI was caused by a transition on the GPIO6 (lid switch) pin? 0 = No; 1 = Yes.
	For this to happen, the GPIO6 pin must be configured both as an input (F0 Index $90h[6] = 0$) and a $92h[6] = 1$).	s the lid switch (F0 Ind
2	Codec SDATA_IN SMI Status (Read to Clear): SMI was caused by an AC97 codec producing a p SDATA_IN? 0 = No; 1 = Yes.	positive edge on
	This is the second level of status is reporting. The top level status is reported in F1BAR+Memory (SMI generation enabling is at F0 Index 80h[5].	Offset 00h/02h[0].
1	RTC Alarm (IRQ8) SMI Status (Read to Clear): SMI was caused by an RTC interrupt? 0 = No; 1	= Yes.
	This SMI event can only occur while in 3V Suspend and RTC interrupt occurs.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
0	ACPI Timer SMI Status (Read to Clear): SMI was caused by an ACPI Timer MSB toggle? 0 = No	o; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offse	et 00h/02h[0].
	SMI generation configuration is at F0 Index 83h[5].	
Note: Prop	perly-configured means that the GPIO pin must be enabled as a GPIO, an input, and to cause an SI	MI.
the	register provides status on several miscellaneous power management events that generate SMIs, Lid Switch. Reading this register clears the SMI status bits. A read-only (mirror) version of this regis ndex 87h.	
ndex F8h-	FFh Reserved	Reset Value = xx

4.3.2 SMI Status and ACPI Timer Registers - Function 1

The register space for the SMI status and ACPI Timer registers is divided into two sections. The first section is used to configure the PCI portion of this support hardware. A Base Address Register at F1 Index 10h (F1BAR) points to the base address of where the second portion of the register space is located. This second section contains the SMI status and ACPI timer support registers.

Note: The ACPI Timer Count Register is accessible through F1BAR+Memory Offset 1Ch and I/O Port 121Ch.

Table 4-16 shows the PCI header registers of F1. The memory mapped registers accessed through F1BAR are shown in Table 4-17.

If the Power Management Configuration Trap bit (F0 Index 41h[3]) is enabled, an access to the PCI header registers causes an SMI. Access through F1BAR is not affected by this bit.

Table 4-16. F1 Index xxh: PCI Header Registers for SMI Status and ACPI Timer

Bit	Description		
Index 00ł	n-01h	Vendor Identification Register (RO)	Reset Value = 1078
Index 02h	n-03h	Device Identification Register (RO)	Reset Value = 0101
Index 04h	n-05h	PCI Command Register (R/W)	Reset Value = 0000
15:2	Reserved (Read Only)		
1	Memory Space: Allow	CS5530A to respond to memory cycles from the PCI bus. $0 = D$	Disable; 1 = Enable.
	This bit must be enabled	d to access memory offsets through F1BAR (F1 Index 10h).	
0	Reserved (Read Only)		
Index 06h	1-07h	PCI Status Register (RO)	Reset Value = 0280
Index 08h	1	Device Revision ID Register (RO)	Reset Value = 00I
Index 09h	n-0Bh	PCI Class Code Register (RO)	Reset Value = 068000
Index 0Cl	h	PCI Cache Line Size Register (RO)	Reset Value = 00
Index 0D	h	PCI Latency Timer Register (RO)	Reset Value = 00
Index 0El	า	PCI Header Type (RO)	Reset Value = 00
Index 0F	ı	PCI BIST Register (RO)	Reset Value = 00
Index 10h	n-13h	Base Address Register — F1BAR (R/W)	Reset Value = 00000000
indicating ues. The u	a 256-byte memory addre upper 16 bytes are always	of the memory mapped SMI status and ACPI timer related regises range. Refer to Table 4-17 for the SMI status and ACPI time mapped to the ACPI timer, and are always memory mapped.	r registers bit formats and reset va
Note: Th	e ACPI Timer Count Regis	ster is accessible through F1BAR+Memory Offset 1Ch and I/O	Port 121Ch.
31:8	SMI Status/Power Man	agement Base Address	
7:0	Address Range (Read	Only)	
Index 14h	n-3Fh	Reserved	Reset Value = 00
Index 40h	n-FFh	Reserved	Reset Value = xx

Bit	Description	
Offset 00h	n-01h Top Level SMI Status Mirror Register (RO)	Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read Only): This bit mirrors the Suspend Mode Com It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Me cleared on exit.	
14	SMI Source is USB (Read Only): SMI was caused by USB activity? 0 = No; 1 = Yes.	
	SMI generation is configured in F0 Index 42h[7:6].	
13	SMI Source is Warm Reset Command (Read Only): SMI was caused by Warm Reset con	nmand? 0 = No; 1 = Yes.
12	SMI Source is NMI (Read Only): SMI was caused by NMI activity? 0 = No; 1 = Yes.	
11:10	Reserved (Read Only): Always reads 0.	
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap (Read Only): SMI was caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F4 or ISA Legacy Register Space? 0 = No; 1 = Yes.	
	The next level of status is found at F1BAR+Memory Offset 04h/06h.	
8	SMI Source is Software Generated (Read Only): SMI was caused by software? 0 = No; 1 = Yes.	
7	SMI on an A20M# Toggle (Read Only): SMI was caused by an access to either Port 092h o initiates an A20M# SMI? 0 = No; 1 = Yes.	r the keyboard command whic
	This method of controlling the internal A20M# in the GX-series processor is used instead of	a pin.
	SMI generation enabling is at F0 Index 53h[0].	
6	SMI Source is a VGA Timer Event (Read Only): SMI was caused by the expiration of the V 0 = No; 1 = Yes.	/GA Timer (F0 Index 8Eh)?
	SMI generation enabling is at F0 Index 83h[3].	
5	SMI Source is Video Retrace (IRQ2) (Read Only): SMI was caused by a video retrace event as decoded from the s connection (PSERIAL register, bit 7) from the GX-series processor? 0 = No; 1 = Yes.	
	SMI generation enabling is at F0 Index 83h[2].	
4:2	Reserved (Read Only): Always reads 0.	
1	SMI Source is Audio Interface (Read Only): SMI was caused by the audio interface? 0 = N	No; 1 = Yes.
	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.	
0	SMI Source is Power Management Event (Read Only): SMI was caused by one of the por 0 = No; 1 = Yes.	wer management resources?
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.	
	Note: The status for the General Purpose Timers and the User Device Defined Traps are cl	hecked separately in bit 9.
ote: Rea	ading this register does not clear the status bits. See F1BAR+Memory Offset 02h.	

Table 4-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers

Bit	Description	
Offset 02I	h-03h Top Level SMI Status Register (RC)	Reset Value = 0000h
15	Suspend Modulation Enable Mirror (Read to Clear): This bit mirrors the Suspend Mode Configuration bit (F0 Index 96h[0]). It is used by the SMI handler to determine if the SMI Speedup Disable Register (F1BAR+Memory Offset 08h) must be cleared on exit.	
14	SMI Source is USB (Read to Clear): SMI was caused by USB activity? 0 = No; 1 = Yes.	
	SMI generation is configured in F0 Index 42h[7:6].	
13	SMI Source is Warm Reset Command (Read to Clear): SMI was caused by Warm Reset command? 0 = No; 1 = Yes.	
12	SMI Source is NMI (Read to Clear): SMI was caused by NMI activity? 0 = No; 1 = Yes.	
11:10	Reserved (Read to Clear): Always reads 0.	
9	SMI Source is General Purpose Timers/User Defined Device Traps/Register Space Trap caused by expiration of GP Timer 1/2; trapped access to UDEF3/2/1; trapped access to F1-F Space? 0 = No; 1 = Yes.	· · · /
	The next level of status is found at F1BAR+Memory Offset 04h/06h.	
8	SMI Source is Software Generated (Read to Clear): SMI was caused by software? 0 = No	; 1 = Yes.
7	SMI on an A20M# Toggle (Read to Clear): SMI was caused by an access to either Port 092 which initiates an A20M# SMI? 0 = No; 1 = Yes.	2h or the keyboard command
	This method of controlling the internal A20M# in the GX-series processor is used instead of a	a pin.
	SMI generation enabling is at F0 Index 53h[0].	
6	SMI Source is a VGA Timer Event (Read to Clear): SMI was caused by the expiration of th 0 = No; 1 = Yes.	ie VGA Timer (F0 Index 8Eh
	SMI generation enabling is at F0 Index 83h[3].	
5	SMI Source is Video Retrace (IRQ2) (Read to Clear): SMI was caused by a video retrace of serial connection (PSERIAL register, bit 7) from the GX-series processor? 0 = No; 1 = Yes. SMI generation enabling is at F0 Index 83h[2].	event as decoded from the
4:2	Reserved (Read to Clear): Always reads 0.	
1	SMI Source is Audio Interface (Read to Clear): SMI was caused by the audio interface? 0	= No: 1 = Yes
•	The next level SMI status registers is found in F3BAR+Memory Offset 10h/12h.	- 110, 1 - 100.
0	SMI Source is Power Management Event (Read to Clear): SMI was caused by one of the p $0 = No; 1 = Yes.$	ower management resource
	The next level of status is found at F0 Index 84h-87h/F4h-F7h.	
	Note: The status for the General Purpose Timers and the User Device Defined Traps are ch	necked separately in bit 9.
Note: Re	ading this register clears all the SMI status bits. Note that bits 9, 1, and 0 have another level (se	econd) of status reporting.
	ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 00h. If the value of the aring the SMI source (and consequently deasserting SMI), the Mirror register may be read inst	•

Table 4-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Register Descriptions (Continued)

Bit	Description
Offset 04	h-05h Second Level General Traps & Timers SMI Status Mirror Register (RO) Reset Value = 0000h
15:6	Reserved (Read Only)
5	PCI Function Trap (Read Only): SMI was caused by a trapped configuration cycle (listed below)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	Trapped access to F0 PCI header registers other than F0 Index 40h-43h; SMI generation enabling is at F0 Index 41h[0]. Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[0].
4	SMI Source is Trapped Access to User Defined Device 3 (Read Only): SMI was caused by a trapped I/O or memory
	access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[6].
3	SMI Source is Trapped Access to User Defined Device 2 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[5].
2	SMI Source is Trapped Access to User Defined Device 1 (Read Only): SMI was caused by a trapped I/O or memory access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[4].
1	SMI Source is Expired General Purpose Timer 2 (Read Only): SMI was caused by the expiration of General Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[1].
0	SMI Source is Expired General Purpose Timer 1 (Read Only): SMI was caused by the expiration of General Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[0].
Note: Re	ading this register does not clear the status bits. See F1BAR+Memory Offset 06h.

Table 4-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Bit	Description	
Offset 06h	-07h Second Level General Traps & Timers SMI Status Register (RC)	Reset Value = 0000h
15:6	Reserved (Read to Clear)	
5	PCI Function Trap (Read to Clear): SMI was caused by a trapped configuration cycle (listed 0 = No; 1 = Yes.	below)?
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	
	Trapped access to F0 PCI header registers other than Index 40h-43h; SMI generation enablin Trapped access to F1 PCI header registers; SMI generation enabling is at F0 Index 41h[3]. Trapped access to F2 PCI header registers; SMI generation enabling is at F0 Index 41h[6]. Trapped access to F3 PCI header registers; SMI generation enabling is at F0 Index 42h[0]. Trapped access to F4 PCI header registers; SMI generation enabling is at F0 Index 42h[0].	ng is at F0 Index 41h[0].
4	SMI Source is Trapped Access to User Defined Device 3 (Read to Clear): SMI was cause access to the User Defined Device 3 (F0 Index C8h)? 0 = No; 1 = Yes.	ed by a trapped I/O or memor
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[6].	
3	SMI Source is Trapped Access to User Defined Device 2 (Read to Clear): SMI was cause access to the User Defined Device 2 (F0 Index C4h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 82h[5].	Offset 00h/02h[9].
2	SMI Source is Trapped Access to User Defined Device 1 (Read to Clear): SMI was cause access to the User Defined Device 1 (F0 Index C0h)? 0 = No; 1 = Yes.	d by a trapped I/O or memory
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 82h[4].	
1	SMI Source is Expired General Purpose Timer 2 (Read to Clear): SMI was caused by the Purpose Timer 2 (F0 Index 8Ah)? 0 = No; 1 = Yes.	expiration of General
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory	Offset 00h/02h[9].
	SMI generation enabling is at F0 Index 83h[1].	
0	SMI Source is Expired General Purpose Timer 1 (Read to Clear): SMI was caused by the Purpose Timer 1 (F0 Index 88h)? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The top level is reported in F1BAR+Memory SMI generation enabling is at F0 Index 83h[0].	Offset 00n/02n[9].
lote: Der	ading this register clears all the SMI status bits.	
A re	ead-only "Mirror" version of this register exists at F1BAR+Memory Offset 04h. If the value of the aring the SMI source (and consequently deasserting SMI), the Mirror register may be read inste	
Offset 08h	-09h SMI Speedup Disable Register (Read to Enable)	Reset Value = 0000h
15:0	SMI Speedup Disable: If bit 1 in the Suspend Configuration Register is set (F0 Index 96h[1] invokes the SMI handler to re-enable Suspend Modulation.	= 1), a read of this register
	The data read from this register can be ignored. If the Suspend Modulation feature is disabled no effect.	d, reading this I/O location ha
Offset 0AI	n-1Bh Reserved	Reset Value = xxh
Offset 1CI	n-1Fh (Note) ACPI Timer Count Register (RO)	Reset Value = 00FFFFFCh
3.579545 2.343 seco		
	MI status is reported at F1BAR+Memory Offset 00h/02h[0]. rel SMI status is reported at F0 Index 87h/F7h[0].	
31:24	Reserved: Always returns 0.	
23:0	Counter	
	ACPI Timer Count Register is also accessible through I/O Port 121Ch.	

Register Descriptions (Continued)

Table 4-17. F1BAR+Memory Offset xxh: SMI Status and ACPI Timer Registers (Continued)

Bit	Description		
Offset 20h	ı-4Fh	Reserved	Reset Value = xx
Offset 50h-FFh	The preferred method is to	sters located here (F1BAR+Memory Offset 50h-FFh) can o program these register through the F0 register space. R guration Registers" on page 153 for bit information regard	Refer to Table 4-15 "F0 Index xxh: PCI

4.3.3 IDE Controller Registers - Function 2

The register space for the IDE controllers is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F2 Index 20h points to the base address of where the second portion of the register space is located. This second section contains the registers used by the IDE controllers to carry out operations. Table 4-18 shows the PCI header registers of F2. The I/O mapped registers, accessed through F2BAR, are shown in Table 4-19.

If the IDE Configuration Trap bit (F0 Index 41h[6]) is set, access to the PCI header registers causes an SMI. Access through F2BAR is not affected by this bit.

Table 4-18. F2 Index xxh: PCI Header Registers for IDE Configuration

Bit	Description		
Index 00ł	n-01h	Vendor Identification Register (RO)	Reset Value = 1078ł
Index 02h	n-03h	Device Identification Register (RO)	Reset Value = 0102h
Index 04h	n-05h	PCI Command Register (R/W)	Reset Value = 0000h
15:3	Reserved (Read Only)		
2	Reserved		
1	Reserved (Read Only)		
0	I/O Space: Allow CS55	30A to respond to I/O cycles from the PCI bus. 0 = Disable; 1	= Enable.
	This bit must be enable	d to access I/O offsets through F2BAR (F2 Index 20h).	
Index 06h	n-07h	PCI Status Register (RO)	Reset Value = 0280h
Index 08h	1	Device Revision ID Register (RO)	Reset Value = 00h
Index 09h	n-0Bh	PCI Class Code Register (RO)	Reset Value = 010180
Index 0Cl	h	PCI Cache Line Size Register (RO)	Reset Value = 00
Index 0DI	h	PCI Latency Timer Register (RO)	Reset Value = 00
Index 0El	า	PCI Header Type (RO)	Reset Value = 00
Index 0Fł	ו	PCI BIST Register (RO)	Reset Value = 00
Index 10h	n-1Fh	Reserved	ReservedReset Value = 00
Index 20h	n-23h	Base Address Register - F2BAR (R/W)	Reset Value = 00000001
0		of the I/O mapped bus mastering IDE and controller registers ange. Refer to Table 4-19 for the IDE configuration registers bit	
31:7	Bus Mastering IDE Ba	se Address	
6:0	Address Range (Read	l Only)	
Index 24h	n-3Fh	Reserved	Reset Value = 00
Index 40h	n-FFh	Reserved	Reset Value = xx

Register Descriptions (Continued)

Table 4-19. F2BAR+I/O Offset xxh: IDE Configuration Registers

Bit	Description	
Offset 00h	IDE Bus Master 0 Command Register — Primary (R/W)	Reset Value = 00h
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC	I writes performed.
	This bit should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master.	
	Bus master operations can be halted by setting bit 0 to 0. Once an operation has been halted, it can not be resumed. If bit is set to 0 while a bus master operation is active, the command is aborted and the data transferred from the drive is discarded. This bit should be reset after completion of data transfer.	
Offset 01h	Reserved	Reset Value = xxh
Offset 02h	IDE Bus Master 0 Status Register — Primary (R/W)	Reset Value = 00h
7	Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode).	
6	Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
5	Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	
4:3	Reserved: Set to 0. Must return 0 on reads.	
2	Bus Master Interrupt: Has the bus master detected an interrupt? 0 = No; 1 = Yes. Write 1 to clear.	
1	Bus Master Error: Has the bus master detected an error during data transfer? 0 = No; 1 = Yes. Write 1 to clear.	
0	Bus Master Active (Read Only): Is the bus master active? 0 = No; 1 = Yes.	
		Becet Velue – xxb
Offset 03h	Reserved	Reset value = XXII
Offset 03h Offset 04h 31:2		
Offset 04h 31:2	-07hIDE Bus Master 0 PRD Table Address — Primary (R/W)ReservePointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE BusWhen written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.When read, this register points to the next PRD.	e t Value = 00000000h Master 0.
Offset 04h 31:2 1:0	-07hIDE Bus Master 0 PRD Table Address — Primary (R/W)Reserved:Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE BusWhen written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.Reserved: Set to 0.	et Value = 00000000h Master 0. (Command Register bi
0ffset 04h 31:2 1:0	-07hIDE Bus Master 0 PRD Table Address — Primary (R/W)Reserved:Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE BusWhen written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.Reserved: Set to 0.	et Value = 00000000h Master 0. (Command Register bi
0ffset 04h 31:2 1:0	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved: Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads.	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h
Offset 04h- 31:2 1:0 Offset 08h	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reservation Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h
Offset 04h 31:2 1:0 Offset 08h 7:4 3	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reservation Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active.	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h
31:2 1:0 Offset 08h 7:4 3 2:1	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved: Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h
Offset 04h 31:2 1:0 Offset 08h 7:4 3	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reservation Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active.	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed.
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved: Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can reis set to 0 while a bus master operation is active, the command is aborted and the data transferred fre carded. This bit should be reset after completion of data transfer.	et Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed.
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved: Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can reis set to 0 while a bus master operation is active, the command is aborted and the data transferred fre carded. This bit should be reset after completion of data transfer.	t Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed.
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Sets the direction of bus master is active. PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can r is set to 0 while a bus master operation is active, the command is aborted and the data transferred fr carded. This bit should be reset after completion of data transfer. Reserved IDE Bus Master 1 Status Register — Secondary (R/W)	et Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed.
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h 7	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can ris set to 0 while a bus master operation is active, the command is aborted and the data transferred fricarded. This bit should be reset after completion of data transfer. Reserved DE Bus Master 1 Status Register — Secondary (R/W) Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can ris set to 0	tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h 7 6	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can ris set to 0 while a bus master operation is active, the command is aborted and the data transferred fricarded. This bit should be reset after completion of data transfer. Bus Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable.	tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh
Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7 6 5	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can r is set to 0 while a bus master operation is active, the command is aborted and the data transferred fr carded. This bit should be reset after completion of data transfer. Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. </td <td>tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh</td>	tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h Offset 0Ah 7 6 5 4:3	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can reis set to 0 while a bus master operation is active, the command is aborted and the data transferred free carded. This bit should be reset after completion of data transfer. Reserved DE Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive	tt Value = 00000000h Master 0. (Command Register b Reset Value = 00h I writes performed. I writes performed. If bit of rom the drive is dis- Reset Value = xxh
Offset 04h 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 0Ah 7 6 5	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Reserved Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PCI This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can r is set to 0 while a bus master operation is active, the command is aborted and the data transferred fr carded. This bit should be reset after completion of data transfer. Bus Master 1 Status Register — Secondary (R/W) Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. </td <td>tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh</td>	tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh
Offset 04h- 31:2 1:0 Offset 08h 7:4 3 2:1 0 Offset 09h Offset 09h Offset 0Ah 7 6 5 4:3	O7h IDE Bus Master 0 PRD Table Address — Primary (R/W) Rese Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for IDE Bus When written, this register points to the first entry in a PRD table. Once IDE Bus Master 0 is enabled (0 = 1), it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. IDE Bus Master 1 Command Register — Secondary (R/W) Reserved: Read or Write Control: Sets the direction of bus master transfers. 0 = PCI reads performed; 1 = PC This bit should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads. Bus Master Control: Controls the state of the bus master. 0 = Disable master; 1 = Enable master. Bus master operations can be halted by setting bit 0 = 0. Once an operation has been halted, it can r is set to 0 while a bus master operation is active, the command is aborted and the data transferred fr carded. This bit should be reset after completion of data transfer. Simplex Mode (Read Only): Can both the primary and secondary channel operate independently? 0 = Yes; 1 = No (simplex mode). Drive 1 DMA Capable: Allow Drive 1 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Drive 0 DMA Capable: Allow Drive 0 to be capable of DMA transfers. 0 = Disable; 1 = Enable. Reserved: Set to 0. Must return 0 on reads.	tt Value = 00000000h Master 0. (Command Register bi Reset Value = 00h I writes performed. I writes performed. If bit (rom the drive is dis- Reset Value = xxh

Table 4-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Bit	Description

Bit	Description	
Offset 0Bh	Reserved	Reset Value = xxh
Offset 0Ch	-0Fh IDE Bus Master 1 PRD Table Address — Secondary (R	/W) Reset Value = 00000000h
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table p When written, this register points to the first entry in a PRD table. Once IDE Bus M 0 = 1], it loads the pointer and updates this register to the next PRD by adding 080 When read, this register points to the next PRD.	aster 1 is enabled (Command Register bit
1:0	Reserved: Set to 0.	
Offset 10h	-1Fh Reserved	Reset Value = xxh
Offset 20h	-23h Channel 0 Drive 0 PIO Register (R/W)	Reset Value = 0000E132h (Note)
Format 0 s	ettings for: PIO Mode 0 = 00009172h PIO Mode 1 = 00012171h PIO Mode 2 = 00020080h PIO Mode 3 = 00032010h PIO Mode 4 = 00040010h	
31:20	Reserved: Set to 0.	
19:16	PIOMODE: PIO mode	
15:12	t2I: Recovery time (value + 1 cycle)	
11:8	t3: IDE_IOW# data setup time (value + 1 cycle)	
7:4	t2W: IDE_IOW# width minus t3 (value + 1 cycle)	
3:0	t1: Address Setup Time (value + 1 cycle)	
	H[31] = 1, Format 1: Allows independent control of command and data. ettings for: PIO Mode 0 = 9172D132h PIO Mode 1 = 21717121h PIO Mode 2 = 00803020h PIO Mode 3 = 20102010h PIO Mode 4 = 00100010h	
31:28	t2IC: Command cycle recovery time (value + 1 cycle)	
27:24	t3C: Command cycle IDE_IOW# data setup (value + 1 cycle)	
23:20	t2WC: Command cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)	
19:16	t1C: Command cycle address setup time (value + 1 cycle)	
15:12	t2ID: Data cycle recovery time (value + 1 cycle)	
11:8	t3D: Data cycle IDE_IOW# data setup (value + 1 cycle)	
11.0		
7:4	t2WD: Data cycle IDE_IOW# pulse width minus t3 (value + 1 cycle)	

Register Descriptions (Continued)

Table 4-19. F2BAR+I/O Offset xxh: IDE Configuration Registers (Continued)

Offset 24h	Description	
	-27h Channel 0 Drive 0 DMA Control Register (R/W)	Reset Value = 00077771
f bit 20 = (), Multiword DMA	
ettings for	: Multiword DMA Mode 0 = 00077771h	
	Multiword DMA Mode 1 = 00012121h	
24	Multiword DMA Mode 2 = 00002020h	
31 30:21	PIO Mode Format: 0 = Format 0; 1 = Format 1. Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA; 1 = Ultra DMA.	
19:16	tKR: IDE IOR# recovery time (4-bit) (value + 1 cycle)	
15:12	tDR: IDE_IOR# recovery time (4-bit) (value + 1 cycle)	
11:8	tKW: IDE_IOW# recovery time (4-bit) (value + 1 cycle)	
7:4	tDW: IDE_IOW# pulse width (value + 1 cycle)	
3:0	tM: IDE_CS0#/CS1# to IDE_IOR#/IOW# setup; IDE_CS0#/CS1# setup to IDE_DACK0#/DAC	`K1#
		μ(1#
	: Ultra DMA Mode 0 = 00921250h	
ocungs ioi	Ultra DMA Mode 1 = 00911140h	
	Ultra DMA Mode 2 = 00911030h	
31	PIO Mode Format: 0 = Format 0; 1 = Format 1.	
30:21	Reserved: Set to 0.	
20	DMA Operation: 0 = Multiword DMA, 1 = Ultra DMA.	
19:16	tCRC: CRC setup UDMA in IDE_DACK# (value + 1 cycle) (for host terminate CRC setup = tM	1LI + tSS)
15:12	tSS: UDMA out (value + 1 cycle)	
11:8	tCYC: Data setup and cycle time UDMA out (value + 2 cycles)	
7:4	tRP: Ready to pause time (value + 1 cycle). Note: tRFS + 1 tRP on next clock.	
3:0	tACK: IDE_CS0#/CS1# setup to IDE_DACK0#/DACK1# (value + 1 cycle)	
offset 28h	-2Bh Channel 0 Drive 1 PIO Register (R/W)	Reset Value = 0000E132
Channel 0	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	าร.
Offset 2Ch	-2Fh Channel 0 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771
Channel 0	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
lote: Onc	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is define	ed as reserved, read only.
Offset 30h	-33h Channel 1 Drive 0 PIO Register (R/W)	Reset Value = 0000E132
hannel 1	Drive 0 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	าร.
Offset 34h		Reset Value = 00077771
	Drive 0 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
lote: Onc	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is define	ed as reserved, read only.
Offset 38h	-3Bh Channel 1 Drive 1 PIO Register (R/W)	Reset Value = 0000E132
hannel 1	Drive 1 Programmed I/O Control Register: Refer to F2BAR+I/O Offset 20h for bit description	าร.
	-3Fh Channel 1 Drive 1 DMA Control Register (R/W)	Reset Value = 00077771
Offset 3Ch	Drive 1 MDMA/UDMA Control Register: Refer to F2BAR+I/O Offset 24h for bit descriptions.	
hannel 1	e the PIO Mode Format is selected in F2BAR+I/O Offset 24h[31], bit 31 of this register is define	ed as reserved, read only.

4.3.4 XpressAUDIO Registers - Function 3

The register space for XpressAUDIO is divided into two sections. The first section is used to configure the PCI portion of the audio interface hardware. A Base Address Register at F3 Index 10h (F3BAR) points to the base address of where the second portion of the register space is located. This second section contains the control and data registers of the audio interface.

Table 4-20 shows the PCI header registers of F3. The memory mapped registers accessed through F3BAR are shown in Table 4-21.

If the F3 Audio Configuration Trap bit (F0 Index 42h[0]) is enabled, an access to the PCI header registers causes an SMI. Access through F3BAR is not affected by this bit.

Table 4-20. F3 Index xxh: PCI Header Registers for XpressAUDIO

	Description		
Index 00h-	01h	Vendor Identification Register (RO)	Reset Value = 1078h
Index 02h-	03h	Device Identification Register (RO)	Reset Value = 0103h
Index 04h-	05h	PCI Command Register (R/W)	Reset Value = 0000h
15:3	Reserved (Read Only)		
2	Reserved (Read/Write)		
1		5530A to respond to memory cycles from the PCI bus. $0 = 1$	Disable; 1 = Enable.
0	Reserved (Read Only)	access memory offsets through F3BAR (F3 Index 10h).	
0 Index 06h-0		PCI Status Register (RO)	Reset Value = 0280h
Index 08h		Device Revision ID Register (RO)	Reset Value = 00h
Index 00h-	0Bh	PCI Class Code Register (RO)	Reset Value = 040100h
Index 00h		PCI Cache Line Size Register (RO)	Reset Value = 040 room
Index 0Dh		PCI Latency Timer Register (RO)	Reset Value = 00h
Index 0Eh		PCI Header Type (RO)	Reset Value = 00h
Index 0Eh		PCI BIST Register (RO)	Reset Value = 00h
Index 01 h	4.2.4	Base Address Register - F3BAR (R/W)	Reset Value = 00000000h
This registe used to con	er sets the base address of t trol the audio FIFO and cod	he memory mapped audio interface control register block. T ec interface, as well as to support SMIs produced by VSA t ry address range. Refer to Table 4-21 for the bit formats and	This is a 128-byte block of registers echnology. Bits [6:0] are read only
31:7	Audio Interface Base Add	dress	
6:0	Address Range (Read Or	nly)	
Index 14h-	3Fh	Reserved	Reset Value = 00h
Index 40h-l	FFh	Reserved	Reset Value = xxh

Table 4-21. F3BAR+Memory Offset xxh: XpressAUDIO Configuration Registers

D:4	Preserintian	<u> </u>
Bit	Description	
Offset 00h	-03h Codec GPIO Status Register (R/W)	Reset Value = 00100000
31	1 Codec GPIO Interface: 0 = Disable; 1 = Enable.	
30	Codec GPIO SMI: Allow codec GPIO interrupt to generate an SMI. 0 = Disable; 1= E	Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
29:21	Reserved: Set to 0.	
20	Codec GPIO Status Valid (Read Only): Is the status read valid? 0 = Yes; 1 = No.	
19:0	Codec GPIO Pin Status (Read Only): This is the GPIO pin status that is received fr signal.	om the codec in slot 12 on SDAIA_IN
Offset 04h	-07h Codec GPIO Control Register (R/W)	Reset Value = 00000000
31:20	Reserved: Set to 0.	
19:0	Codec GPIO Pin Data: This is the GPIO pin data that is sent to the codec in slot 12	on the SDATA_OUT signal.
Offset 08h	-0Bh Codec Status Register (R/W)	Reset Value = 00000000
31:24	Codec Status Address (Read Only): Address of the register for which status is beir slot 1 bits [19:12].	ng returned. This address comes fror
23	Codec Serial INT SMI: Allow codec serial interrupt to generate an SMI. 0 = Disable;	1= Enable.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[1].	
22	SYNC Pin: Selects SYNC pin level. 0 = Low; 1 = High.	
21	Enable SDATA_IN2: Pin AE24 function selection. 0 = GPIO1; 1 = SDATA_IN2.	
	For this pin to function as SDATA_IN2, it must first be configured as an input (F0 Inde	ex 90h[1] = 0).
20	Audio Bus Master 5 AC97 Slot Select: Selects slot for Audio Bus Master 5 to receiv	ve data. $0 = $ Slot 6; $1 = $ Slot 11.
19	Audio Bus Master 4 AC97 Slot Select: Selects slot for Audio Bus Master 4 to trans	mit data. 0 = Slot 6; 1 = Slot 11.
18	Reserved: Set to 0.	
17	Status Tag (Read Only): Determines if the status in bits [15:0] is new or not. 0 = Not	t new; 1 = New.
16	Codec Status Valid (Read Only): Is the status in bits [15:0] valid? 0 = No; 1 = Yes.	
15:0	Codec Status (Read Only): This is the codec status data that is received from the c [19:4] are used from slot 2.	odec in slot 2 on SDATA_IN. Only bit
Offset 0Ch	n-0Fh Codec Command Register (R/W)	Reset Value = 00000000
31:24	Codec Command Address: Address of the codec control register for which the common slot 1 bits [19:12] on SDATA_OUT.	mand is being sent. This address goe
23:22	CS5530A Codec Communication: Selects which codec to communicate with.	
	00 = Primary codec 10 = Third codec	
	01 = Secondary codec 11 = Fourth codec	
	Note: 00 and 01 are the only valid settings for these bits.	
21:17	Reserved: Set to 0.	
16	Codec Command Valid: Is the command in bits [15:0] valid? 0 = No; 1 = Yes.	
	This bit is set by hardware when a command is loaded. It remains set until the comm	and has been sent to the codec.
15:0	Codec Command: This is the command being sent to the codec in bits [19:12] of slo	

Bit	Description	
Offset 1	10h-11h Second Level Audio SMI Status Register (RC)	Reset Value = 0000
15:8	Reserved: Set to 0.	
7	Audio Bus Master 5 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	ing on Audio Bus Master 5?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	mory Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	,
6	Audio Bus Master 4 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	ing on Audio Bus Master 4?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	,
5	Audio Bus Master 3 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	0
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	,
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	,
4	Audio Bus Master 2 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	ing on Audio Bus Master 2?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	,
3	Audio Bus Master 1 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	ing on Audio Bus Master 1?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	,
2	Audio Bus Master 0 SMI Status (Read to Clear): SMI was caused by an event occurr 0 = No; 1 = Yes.	ing on Audio Bus Master 0?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offse generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory	• • •
1	Codec Serial or GPIO Interrupt SMI Status (Read to Clear): SMI was caused by a set 0 = No; 1 = Yes.	·
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Me	
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.	
0	I/O Trap SMI Status (Read to Clear): SMI was caused by an I/O trap? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The next level (third level) of SMI status Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].	s reporting is at F3BAR+Memory
	Reading this register clears the status bits. Note that bit 0 has another level (third) of SMI sta	
	A read-only "Mirror" version of this register exists at F3BAR+Memory Offset 12h. If the value clearing the SMI source (and consequently deasserting SMI), the Mirror register may be read	0

Register Descriptions (Continued)

Table 4-21. F3BAR+Memory Offset xxh: XpressAUDIO Configuration Registers (Continued)

Bit	Description	
Offset 12	h-13h Second Level Audio SMI Status Mirror Register (RO)	Reset Value = 0000
15:8	Reserved: Set to 0.	
7	Audio Bus Master 5 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 5?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 5 is enabled (F3BAR+Memory Offset 48h] generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /
6	Audio Bus Master 4 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 4?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 4 is enabled (F3BAR+Memory Offset 40h[generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /
5	Audio Bus Master 3 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 3?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 3 is enabled (F3BAR+Memory Offset 38h[generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /
4	Audio Bus Master 2 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 2?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (
	SMI generation is enabled when Audio Bus Master 2 is enabled (F3BAR+Memory Offset 30h] generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- ,
3	Audio Bus Master 1 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 1?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 1 is enabled (F3BAR+Memory Offset 28h] generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	• /
2	Audio Bus Master 0 SMI Status (Read Only): SMI was caused by an event occurring on Aud 0 = No; 1 = Yes.	dio Bus Master 0?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation is enabled when Audio Bus Master 0 is enabled (F3BAR+Memory Offset 20h] generated when the End of Page bit is set in the SMI Status Register (F3BAR+Memory Offset	- /
1	Codec Serial or GPIO Interrupt SMI Status (Read Only): SMI was caused by a serial or GP 0 = No; 1 = Yes.	'IO interrupt from codec?
	This is the second level of SMI status reporting. The top level is reported at F1BAR+Memory (Offset 00h/02h[1].
	SMI generation enabling for codec serial interrupt: F3BAR+Memory Offset 08h[23] = 1. SMI generation enabling for codec GPIO interrupt: F3BAR+Memory Offset 00h[30] = 1.	
0	I/O Trap SMI Status (Read Only): SMI was caused by an I/O trap? 0 = No; 1 = Yes.	
	This is the second level of SMI status reporting. The next level (third level) of SMI status report Offset 14h. The top level is reported at F1BAR+Memory Offset 00h/02h[1].	ting is at F3BAR+Memory

Bit	Description		
Offset 14	n-17h I/O Trap SMI and Fast Write Status Register (RO/RC) Reset Value = 00000000h		
31:24	Fast Path Write Even Access Data (Read Only): These bits contain the data from the last Fast Path Write Even access. These bits change only on a fast write to an even address.		
23:16	Fast Path Write Odd Access Data (Read Only): These bits contain the data from the last Fast Path Write Odd access. These bits change on a fast write to an odd address, and also on any non-fast write.		
15	Fast Write A1 (Read Only): This bit contains the A1 value for the last Fast Write access.		
14	Read or Write I/O Access (Read Only): Last trapped I/O access was a read or a write? 0 = Read; 1 = Write.		
13	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)		
	Fast Path Write must be enabled, F3BAR+Memory Offset 18h[11] = 1, for the SMI to be reported here. If Fast Path Write is disabled, the SMI is reported in bit 10 of this register.		
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].		
12	DMA Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the DMA I/O Trap? 0 = No; 1 = Yes. (Note)		
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling is at F3BAR+Memory Offset 18h[8:7].		
11	MPU Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the MPU I/O Trap? 0 = No; 1 = Yes. (Note)		
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling is at F3BAR+Memory Offset 18h[6:5].		
10	Sound Card or FM Trap SMI Status (Read to Clear): SMI was caused by a trapped I/O access to the sound card or FM I/O Trap? 0 = No; 1 = Yes. (Note)		
	Fast Path Write must be disabled, F3BAR+Memory Offset 18h[11] = 0, for the SMI to be reported here. If Fast Path Write i enabled, the SMI is reported in bit 13 of this register.		
	This is the third level of SMI status reporting. The second level of SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. The top level is reported at F1BAR+Memory Offset 00h/02h[1].		
	SMI generation enabling is at F3BAR+Memory Offset 18h[2].		
9:0	X-Bus Address (Read Only): Bits [9:0] contain the captured ten bits of X-Bus address.		
Note: For	the four SMI status bits (bits [13:10]), if the activity was a fast write to an even address, no SMI is generated regardless of the IA, MPU, or sound card status. If the activity was a fast write to an odd address, an SMI is generated but bit 13 is set to a 1.		

Table 1-21 ory Offset xxh: XpressAUDIO Configuration Registers (Continued) E2DAD.M

Bit	Description	
Offset 18h	-19h I/O Trap SMI Enable Register (R/W)	Reset Value = 0000h
15:12	Reserved: Set to 0.	
11	Fast Path Write Enable: Fast Path Write (an SMI is not generated on certain writes to s $0 = D$ is able; $1 = E$ nable.	specified addresses).
	In Fast Path Write, the CS5530A responds to writes to the following addresses: 388h, 38 2x8h.	8Ah and 38Bh; 2x0h, 2x2h, and
10:9	Fast Read: These two bits hold part of the response that the CS5530A returns for reads	s to several I/O locations.
8	High DMA I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port C0h-DFh, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
-7	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].	
7	Low DMA I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 00h-0Fh, an SMI is generated.	
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1]. Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[12].	
6	High MPU I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 330h and 331h, an SMI is generate	ed.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[11].	
5	Low MPU I/O Trap: I0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 300h and 301h, an SMI is generate	ed.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0]. Third level SMI status is reported at F3BAR+Memory Offset 14h[11].	
4	Fast Path Read Enable/SMI Disable: Read Fast Path (an SMI is not generated on read	te from enocified addresses)
4	0 = Disable; 1 = Enable.	as nom specified addresses).
	In Fast Path Read the CS5530A responds to reads of the following addresses: 388h-38f	Bh: 2x0h. 2x1h. 2x2h. 2x3h. 2x8h
	and 2x9h.	,,,,,,,,
	Note that if neither sound card nor FM I/O mapping is enabled, then status read trapping	g is not possible.
3	FM I/O Trap: 0 = Disable; 1 = Enable.	
	If this bit is enabled and an access occurs at I/O Port 388h to 38Bh, an SMI is generated	d.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
2	Sound Card I/O Trap: 0 = Disable; 1 = Enable	
	If this bit is enabled and an access occurs in the address ranges selected by bits [1:0], a	an SMI is generated.
	Top level SMI status is reported at F1BAR+Memory Offset 00h/02h[1].	
	Second level SMI status is reported at F3BAR+Memory Offset 10h/12h[0].	
	Third level SMI status is reported at F3BAR+Memory Offset 14h[10].	
1:0	Sound Card Address Range Select: These bits select the address range for the sound	d card I/O trap.
	00 = I/O Port 220h-22Fh 10 = I/O Port 260h-26Fh 11 = I/O Port 280h 28Fh	
	01 = I/O Port 240h-24Fh 11 = I/O Port 280h-28Fh	

Table 4-21. F3BAR+Memory Offset xxh: XpressAUDIO Configuration Registers (Continued)

Bit	Description	
Offset 1A	h-1Bh Internal IRQ Enable Register (R/W)	Reset Value = 0000
15	IRQ15 Internal: Configure IRQ15 for internal (software) or external (hardware) use. 0 = External	rnal; 1 = Internal.
14	IRQ14 Internal: Configure IRQ14 for internal (software) or external (hardware) use. 0 = External	rnal; 1 = Internal.
13	Reserved: Set to 0.	
12	IRQ12 Internal: Configure IRQ12 for internal (software) or external (hardware) use. 0 = External	rnal; 1 = Internal.
11	IRQ11 Internal: Configure IRQ11 for internal (software) or external (hardware) use. 0 = External	rnal; 1 = Internal.
10	IRQ10 Internal: Configure IRQ10 for internal (software) or external (hardware) use. 0 = External	rnal; 1 = Internal.
9	IRQ9 Internal: Configure IRQ9 for internal (software) or external (hardware) use. 0 = External	al; 1 = Internal.
8	Reserved: Set to 0.	
7	IRQ7 Internal: Configure IRQ7 for internal (software) or external (hardware) use. 0 = External	al; 1 = Internal.
6	Reserved: Set to 0.	
5	IRQ5 Internal: Configure IRQ5 for internal (software) or external (hardware) use. 0 = External	al; 1 = Internal.
4	IRQ4 Internal: Configure IRQ4 for internal (software) or external (hardware) use. 0 = External	al; 1 = Internal.
3	IRQ3 Internal: Configure IRQ3 for internal (software) or external (hardware) use. 0 = External	al; 1 = Internal.
2:0	Reserved: Set to 0.	
Note: Mu	st be read and written as a WORD.	
Offset 1C	h-1Dh Internal IRQ Control Register (R/W)	Reset Value = 0000
15	Assert Masked Internal IRQ15: 0 = Disable; 1 = Enable.	
14	Assert Masked Internal IRQ14: 0 = Disable; 1 = Enable.	
13	Reserved: Set to 0.	
12	Assert Masked Internal IRQ12: 0 = Disable; 1 = Enable.	
11	Assert masked internal IRQ11: 0 = Disable; 1 = Enable.	
10	Assert Masked Internal IRQ10: 0 = Disable; 1 = Enable.	
9	Assert Masked Internal IRQ9: 0 = Disable; 1 = Enable.	
8	Reserved: Set to 0.	
7	Assert Masked Internal IRQ7: 0 = Disable; 1 = Enable.	
6	Reserved: Set to 0.	
5	Assert Masked Internal IRQ5: 0 = Disable; 1 = Enable.	
4	Assert Masked Internal IRQ4: 0 = Disable; 1 = Enable.	
3	Assert Masked Internal IRQ3: 0 = Disable; 1 = Enable.	
2:0	Reserved: Set to 0.	
Offset 1E	h-1Fh Internal IRQ Mask Register (Write Only)	Reset Value = xxxxI
15	Mask Internal IRQ15: 0 = Disable; 1 = Enable.	
14	Mask Internal IRQ14: 0 = Disable; 1 = Enable.	
13	Reserved: Set to 0.	
12	Mask Internal IRQ12: 0 = Disable; 1 = Enable.	
11	Mask Internal IRQ11: 0 = Disable; 1 = Enable.	
10	Mask Internal IRQ10: 0 = Disable; 1 = Enable.	
9	Mask Internal IRQ9: 0 = Disable; 1 = Enable.	
8	Reserved: Set to 0.	
7	Mask Internal IRQ7: 0 = Disable; 1 = Enable.	
6	Reserved: Set to 0.	
5	Mask Internal IRQ5: 0 = Disable; 1 = Enable.	
4	Mask Internal IRQ4: 0 = Disable; 1 = Enable.	
3	Mask Internal IRQ3: 0 = Disable; 1 = Enable.	
2:0	Reserved: Set to 0.	

Table 4-21. F3BAR+Memory Offset xxh: XpressAUDIO Configuration Registers (Continued)

Bit	Description	
Offset 20h	Audio Bus Master 0 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 0. 0 = PCI reads performed.	ed;
	This bit must be set to 0 (read) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 0. 0 = Disable; 1 = Enable.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reach EOT. Writing this bit to 0 while the bus master is operating results in unpredictal possibility of the bus master state machine crashing. The only recovery from this condition is a P	ble behavior; including the
Note: Mus	t be read and written as a BYTE.	
Offset 21h	Audio Bus Master 0 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has 0 = No; 1 = Yes.	cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it cause until this register is read to clear the error.	es the bus master to pause
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the Pl 0 = No; 1 = Yes.	RD table (bit 30)?
Note: Mus	t be read and written as a BYTE.	
Offset 22h	23h Reserved	Reset Value = xxh
Offset 24h		
Audio Bus	27h Audio Bus Master 0 PRD Table Address (R/W) R	Reset Value = 00000000h
	Audio Bus Master 0 PRD Table Address (R/W) R Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	teset Value = 00000000h
31:2		
31:2	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	o Bus Master 0.
31:2	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en	o Bus Master 0.
1:0	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0.	o Bus Master 0.
1:0 Offset 28h	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	o Bus Master 0. habled (Command Register
1:0 Offset 28h	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W)	o Bus Master 0. habled (Command Register
1:0 Offset 28h Audio Bus	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Audio Bus Master 1 Command Register (R/W) Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.	o Bus Master 0. habled (Command Register Reset Value = 00h
1:0 Offset 28h Audio Bus 7:4	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performance	o Bus Master 0. habled (Command Register Reset Value = 00h
1:0 Offset 28h Audio Bus 7:4	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed.	o Bus Master 0. habled (Command Register Reset Value = 00h
1:0 Offset 28h Audio Bus 7:4 3	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed. 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active.	o Bus Master 0. habled (Command Register Reset Value = 00h
1:0 Offset 28h Audio Bus 7:4 3 2:1	Master 0: Output to Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio When written, this register points to the first entry in a PRD table. Once Audio Bus Master 0 is en bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reserved: Set to 0. Must return 0 on reads. Read or Write Control: Set the transfer direction of Audio Bus Master 1. 0 = PCI reads performed 1 = PCI writes performed. This bit must be set to 1 (write) and should not be changed when the bus master is active. Reserved: Set to 0. Must return 0 on reads.	o Bus Master 0. habled (Command Register Reset Value = 00h ed; bus master must be either able behavior including the

Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 7.2 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first, it causes the bus master to pau until thin register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 Fointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. 0 Makester 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. 10 Reserved: Set to the Master PRD. 10 Reserved: Set to 0. Must return 0 or reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = Disable; 1 = Enable. </th <th>Bit</th> <th>Description</th> <th></th>	Bit	Description		
7.2 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 No; 1 = Yes. 1 In hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to part until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 2Ah-2Bh Reserved Reset Value = 0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Siots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1. When written, this register points to the next PRD. 1:0 1:0 Reserved: Set to 0. Audio Bus Master 2 Command Register (R/W) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. 3 3: Read or Write Control: Set the transfer to begin data transfers. When writing this bit to the anables the bus master to begin data transfers. When writing this bit to 0, the bus master to begin data transfers. When writing this bit 0, the haselset to B. 3 </td <td>Offset 29h</td> <td>Audio Bus Master 1 SMI Status Register (RC)</td> <td>Reset Value = 00h</td>	Offset 29h	Audio Bus Master 1 SMI Status Register (RC)	Reset Value = 00h	
Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = Ro; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to pat until this register is read to clear: Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 Hord of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 Hord of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 Hord of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table. Comotion to Audio Bus Master 1. 0 Mise Waster 1: Input from Codec; 32-bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table. Conducib Bus Master 1. When written, this register points to the first entry in a PRD table. Conducib Bus Master 1. When read, this register points to the next PRD. 1:0 Reserved: Set to 0. Must return 0 on reads. Audio Bus Master 2. Ourput to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: St the transfer direction of Audio Bus Master 2. 0 = Distable; 1 = Enable.	Audio Bus	Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4.		
Image: Second Example Control Second Example Second Exampl				
If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to part until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 - Roy, 1 = Yes. Note: Must be read and written as a BYTE. Offset 2Ah-2Bh Reserved Reset Value = x0 0 and the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1. 10 Reserved: Set to 0. Audio Bus Master 2 Command Regist points to the next PRD. 10 Reserved: Set to 0. Audio Bus Master 2 Command Regist points to the next PRD. 10 Reserved: Set to 0. Audio Bus Master 2 Command Regist points to the next PRD. 10 Reserved: Set to 0. Audio Bus Master 2 Command Regist (R/W) Reset Value = 0 Audio Bus Master 2. Output to Codec; 16-Bit; Siot 5. 7.4 Reserved: Set to 0. Reserved: Set to 0. 7.4 Reserved: Set to 0. Must return 0 on reads. 8 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PcI writes performed.	1			
0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No: 1 = Yes. 0 Mot: Hust be read and written as a BYTE. Offset 2Ah-2Bh Reserved Reset Value = x0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reset Value = 0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reset Value = 0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. Reset Value = 0000000 Mone written, this register points to the first entry in a PPD table. Once Audio Bus Master 1 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. Reserved: Set to 0. More Must be pointer on the next PRD. Reserved: Set to 0. Reserved: Set to 0. 1:0 Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Reserved Se		If hardware encounters a second EOP (end of page) before software has cleared the first, it	causes the bus master to paus	
Offset 2Ah-2Bh Reserved Reset Value = x: Offset 2Ch-2Fh Audio Bus Master 1 PRD Table Address (R/W) Reset Value = 0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Registe bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. 1.0 Reserved: Set to 0. Mudio Bus Master 2 Command Register (R/W) Reset Value = 0 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7.4 Reserved: Set to 0. Must return 0 on reads. 8 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. 1 1 4 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. 5 Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eit paused or reached EOT. Writing this bit to 0 white the bus master is operating results in unpredicable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI resel. </td <td>0</td> <td>End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in</td> <td>the PRD table (bit 30)?</td>	0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in	the PRD table (bit 30)?	
Offset 2Ch-2Fh Audio Bus Master 1 PRD Table Address (R/W) Reset Value = 0000000 Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Registe bit 0 = 1), it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. 1:0 Reserved: Set to 0. Audio Bus Master 2 Command Register (R/W) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Controls the state of the Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master state in parsetoring results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE.	Note: Mus	t be read and written as a BYTE.		
Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Register bit 0 = 1), it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Offset 30h Audio Bus Master 2 Command Register (RW) Reset Value = 0 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7.4 Reserved: Set to 0. Must return 0 on reads. 3 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master to basel. 1 Eable. 2:1 Reserved: Set to 0. Must return 0 on reads. 3 Reserved: Set to 0. Must return 0 on reads. 5 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eild paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE.	Offset 2Ał	-2Bh Reserved	Reset Value = xxh	
Audio Bus Master 1: Input from Codec; 32-Bit; Left and Right Channels; Slots 3 and 4. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Register bit 0 = 1), it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. Reserved: Set to 0. Offset 30h Audio Bus Master 2 Command Register (RW) Reset Value = 0 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7.4 Reserved: Set to 0. Must return 0 on reads. 3 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master to basel. 1 Eable. 2:1 Reserved: Set to 0. Must return 0 on reads. 3 Reserved: Set to 0. Must return 0 on reads. 5 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eild paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE.	Offset 2Ch	-2Fh Audio Bus Master 1 PRD Table Address (R/W)	Reset Value = 00000000h	
31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 1. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Registe bit 0 = 1), it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. 1:0 Reserved: Set to 0. Audio Bus Master 2 Command Register (R/W) Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 7:4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. 1:1 Reserved: Set to 0. Must return 0 on reads. 0 8 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eitil paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved (Read to Clear): 7:4 Reserved (Read to Clear): Hardware encountered a second				
When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 is enabled (Command Regist bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD. 1:0 Reserved: Set to 0. Offset 30h Audio Bus Master 2 Count to Codec; 16-Bit; Slot 5. 7.4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. 1 1 11: Dis bit must be set to 0 (read) and should not be changed when the bus master is active. 2.1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eitil paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this contiton is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear): Audio Bus Master 2 PRD Table Address (R/W) <td< td=""><td></td><td></td><td>Audio Ruo Montor 1</td></td<>			Audio Ruo Montor 1	
1:0 Reserved: Set to 0. Offset 30h Audio Bus Master 2 Command Register (R/W) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. 1 This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eit paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 1 Bus Master Error (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 0 End of Page (Read to Clear): Bus ma	51.2	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 1 bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.		
Offset 3D Audio Bus Master 2 Command Register (R/W) Reset Value = 0 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 2:1 Reserved: Set to 0. Must return 0 on reads. 0 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eiti paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 1 Bus Master Tror (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 0 End of Page (Read to Clear): Bus master 2 PRD Table Address (R/W) Reset Value = x <td co<="" td=""><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td>			
Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eiti paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear): 1 Bus Master Error (Read to Clear): 1 Bus Master 2: Output to Codec; 16-Bit; Slot 5	1:0	Reserved: Set to 0.		
7:4 Reserved: Set to 0. Must return 0 on reads. 3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eith paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved (Read to Clear) 1 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 1 Hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to pat until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 31h-31h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = so Reset Value = so <td>Offset 30h</td> <td>Audio Bus Master 2 Command Register (R/W)</td> <td>Reset Value = 00h</td>	Offset 30h	Audio Bus Master 2 Command Register (R/W)	Reset Value = 00h	
3 Read or Write Control: Set the transfer direction of Audio Bus Master 2. 0 = PCI reads performed; 1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eith paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved (Read to Clear) 1 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to patient it this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 31h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = x Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 00000000 Audio Bus Master 2: Outpu	Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.		
1 = PCI writes performed. This bit must be set to 0 (read) and should not be changed when the bus master is active. 2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eittip paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved (Read to Clear) 1 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. 0 End of Page (Read to Clear): Bus master 2 PRD Table Address (R/W) Reset Value = xon transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Seerved Reset Value = xon transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes.	7:4	Reserved: Set to 0. Must return 0 on reads.		
2:1 Reserved: Set to 0. Must return 0 on reads. 0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eitt paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = 0 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. 0 End of Page (Read to Clear): Bus master 2 PRD Table Address (R/W) Reset Value = 00000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. State 2 State 2	3	•	rformed;	
0 Bus Master Control: Controls the state of the Audio Bus Master 2. 0 = Disable; 1 = Enable. Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eitl paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reserved (Read to Clear) Reserved (Read to Clear): 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = x: Reset Value = 100000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register				
Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the bus master must be eiti paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. Reserved (Read to Clear) Reserved (Read to Clear) Reserved (Read to Clear): Rese				
paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredictable behavior including possibility of the bus master state machine crashing. The only recovery from this condition is a PCI reset. Note: Must be read and written as a BYTE. Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reset Value = 00 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. Reserved (Read to Clear) Reserved (Read to Clear): 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. 11 hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to pau until this register is read to clear the error. 0 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Reserved Reset Value = x: Offset 32h-33h Reserved Reset Value = x: Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 00000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (C	0			
Offset 31h Audio Bus Master 2 SMI Status Register (RC) Reset Value = 04 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to page until this register is read to clear the error. 0 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: Offset 32h-33h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 00000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.		paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unp	redictable behavior including the	
Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 7:4 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to pade until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Mudio Bus Master 2 PRD Table Address (R/W) Reset Value = x: Offset 34h-37h Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Register bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Note: Mus	t be read and written as a BYTE.		
7:4 Reserved (Read to Clear) 1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to page until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Offset 31h	Audio Bus Master 2 SMI Status Register (RC)	Reset Value = 00h	
1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to page until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.		
1 Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has cleared the first? 0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to pau until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: 0 Offset 32h-37h Audio Bus Master 2 PRD Table Address (R/W) Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	7:4	Reserved (Read to Clear)		
until this register is read to clear the error. 0 End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PRD table (bit 30)? 0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = xx Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 00000004 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.		Bus Master Error (Read to Clear): Hardware encountered a second EOP before software	has cleared the first?	
0 = No; 1 = Yes. Note: Must be read and written as a BYTE. Offset 32h-33h Reserved Reset Value = x: Offset 32h-33h Reserved Reset Value = x: Offset 32h-33h Reserved Reset Value = 0000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.			causes the bus master to paus	
Offset 32h-33h Reserved Reset Value = x: Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 0000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. Slot 2 Slot 2 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	0		the PRD table (bit 30)?	
Offset 34h-37h Audio Bus Master 2 PRD Table Address (R/W) Reset Value = 0000000 Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. 31:2 View nvitten, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Note: Mus	t be read and written as a BYTE.		
Audio Bus Master 2: Output to Codec; 16-Bit; Slot 5. 31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Regis bit 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Offset 32h	-33h Reserved	Reset Value = xxh	
31:2 Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio Bus Master 2. When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Register 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Offset 34h	-37h Audio Bus Master 2 PRD Table Address (R/W)	Reset Value = 00000000h	
When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Register 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	Audio Bus	Master 2: Output to Codec; 16-Bit; Slot 5.		
When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 is enabled (Command Register 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h. When read, this register points to the next PRD.	31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for	Audio Bus Master 2.	
		When written, this register points to the first entry in a PRD table. Once Audio Bus Master 2 bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.		
1:0 Reserved: Set to 0.				

Bit	Description	
Offset 38h	Audio Bus Master 3 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 3. 0 = PCI reads performe 1 = PCI writes performed.	ed;
	This bit must be set to 1 (write) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 3. 0 = Disable; 1 = Enable.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredicta possibility of the bus master state machine crashing. The only recovery from this condition is a P	able behavior including the
Note: Mus	st be read and written as a BYTE.	
Offset 39h	Audio Bus Master 3 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software has o	leared the first?
·	0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it cause	
	until this register is read to clear the error.	
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the PF 0 = No; 1 = Yes.	RD table (bit 30)?
Note: Mus	st be read and written as a BYTE.	
Offset 3Ah	n-3Bh Reserved	Reset Value = xxh
Offset 3Ch	n-3Fh Audio Bus Master 3 PRD Table Address (R/W) R	eset Value = 00000000h
Audio Bus	Master 3: Input from Codec; 16-Bit; Slot 5.	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for Audio	Bus Master 3.
	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 3 is enable 0 = 1], it loads the pointer and updates this register to the next PRD by adding 08h.	abled (Command Registe
	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 40h	Audio Bus Master 4 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 4. 0 = PCI reads performed. 1 = PCI writes performed.	ed;
	This bit must be set to 0 (read) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 4. 0 = Disable; 1 = Enable.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, the paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unpredicta possibility of the bus master state machine crashing. The only recovery from this condition is a P	able behavior including th
Note: Mus	st be read and written as a BYTE.	

Tab	le 4-21. F3BAR+Memory Offset xxh: XpressAUDIO Configuration Regi	sters (Continued)
Bit	Description	
Offset 41h	Audio Bus Master 4 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software h $0 = No; 1 = Yes.$	as cleared the first?
	If hardware encounters a second EOP (end of page) before software has cleared the first, it causes the bus master to par until this register is read to clear the error.	
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the $0 = No; 1 = Yes.$	e PRD table (bit 30)?
Note: Mu	t be read and written as a BYTE.	
Offset 42h	-43h Reserved	Reset Value = xxh
Offset 44	-47h Audio Bus Master 4 PRD Table Address (R/W)	Reset Value = 00000000h
	Master 4: Output to Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[19] selects slot).	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for A When written, this register points to the first entry in a PRD table. Once Audio Bus Master 4 is bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	
	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 48h	Audio Bus Master 5 Command Register (R/W)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).	
7:4	Reserved: Set to 0. Must return 0 on reads.	
3	Read or Write Control: Set the transfer direction of Audio Bus Master 5. 0 = PCI reads perfort 1 = PCI writes performed.	ormed;
	This bit must be set to 1 (write) and should not be changed when the bus master is active.	
2:1	Reserved: Set to 0. Must return 0 on reads.	
0	Bus Master Control: Controls the state of the Audio Bus Master 5. 0 = Disable; 1 = Enable.	
	Setting this bit to 1 enables the bus master to begin data transfers. When writing this bit to 0, paused or reached EOT. Writing this bit to 0 while the bus master is operating results in unprepossibility of the bus master state machine crashing. The only recovery from this condition is	dictable behavior including the
Note: Mu	to be read and written as a BYTE.	
Offset 49h	Audio Bus Master 5 SMI Status Register (RC)	Reset Value = 00h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).	
7:4	Reserved (Read to Clear)	
1	Bus Master Error (Read to Clear): Hardware encountered a second EOP before software h	as cleared the first?
	0 = No; 1 = Yes. If hardware encounters a second EOP (end of page) before software has cleared the first, it ca	auses the bus master to pause
	until this register is read to clear the error.	
0	End of Page (Read to Clear): Bus master transferred data which is marked by EOP bit in the 0 = No; 1 = Yes.	e PRD table (bit 30)?
Note: Mu	t be read and written as a BYTE.	
Offset 4A	-4Bh Reserved	Reset Value = xxh
Offset 4Cl	-4Fh Audio Bus Master 5 PRD Table Address (R/W)	Reset Value = 00000000h
Audio Bus	Master 5: Input from Codec; 16-Bit; Slot 6 or 11 (F3BAR+Memory Offset 08h[20] selects slot).	
31:2	Pointer to the Physical Region Descriptor Table: This register is a PRD table pointer for A	udio Bus Master 5.
02	When written, this register points to the first entry in a PRD table. Once Audio Bus Master 5 is bit $0 = 1$], it loads the pointer and updates this register to the next PRD by adding 08h.	
4.0	When read, this register points to the next PRD.	
1:0	Reserved: Set to 0.	
Offset 50h	-FFh Reserved	Reset Value = xxh

4.3.5 Video Controller Registers - Function 4

The register space for the video controller is divided into two sections. The first section is used to configure the PCI portion of the controller. A Base Address Register at F4 Index 10h (F4BAR) points to the base address of where the second portion of the register space is located. The second section contains the registers used by the video controller to carry out video operations. Table 4-22 shows the PCI header registers of F4. The memory mapped registers accessed through F4BAR, and shown in Table 4-23, must be accessed using DWORD operations. When writing to one of these 32-bit registers, all four bytes must be written.

If the F4 Video Configuration Trap bit (F0 Index 42h[1]) is set, access to the PCI header registers causes an SMI. Access through F4BAR is not affected by this bit.

Table 4-22. F4 Index xxh: PCI Header Registers for Video Controller Configuration

Bit Index 00h-	Description	Vendor Identification Register (RO)	Reset Value = 1078
	-	5 ()	
Index 02h-		Device Identification Register (RO)	Reset Value = 0104
Index 04h-0		PCI Command Register (R/W)	Reset Value = 0000
15:2 1		CS5530A to respond to memory cycles from the PCI bus. 0 = d to access memory offsets through F4BAR (F4 Index 10h).	= Disable; 1 = Enable.
0	Reserved (Read Only)		
Index 06h-	07h	PCI Status Register (RO)	Reset Value = 0280
Index 08h		Device Revision ID Register (RO)	Reset Value = 00
Index 09h-	0Bh	PCI Class Code Register (RO)	Reset Value = 030000
Index 0Ch		PCI Cache Line Size Register (RO)	Reset Value = 00
Index 0Dh		PCI Latency Timer Register (RO)	Reset Value = 00
Index 0Eh		PCI Header Type (RO)	Reset Value = 00
Index 0Fh		PCI BIST Register (RO)	Reset Value = 00
	er sets the base address of a 4 KB memory address ra Video Controller and C Address Range (Read	Base Address Register - F4BAR (R/W) of the memory mapped video controller registers. Bits [11:0] ange. Refer to Table 4-23 for the video controller register bit i Clock Control Base I/O Address Only) Reserved	

Bit	Description		
Offset 00I	h-03h Video Configura	ation Register (R/W)	Reset Value = 00000000h
31	Reserved: Set to 0		
30	High Speed Timing for Video Interface: High spee	ed timings for the video interface	. 0 = Disable; 1= Enable.
	If bit 30 is enabled, bit 25 should be set to 0.		
29	16-bit Video Interface: Allow video interface to be 1	6 bits. 0 = Disable; 1= Enable.	
	If bit 29 is enabled, 8 bits of pixel data is used for vid	leo. The 24-bit pixel data is then	dithered to 16 bits.
	Note: F4BAR+Memory Offset 04h[25] should be se	et to the same value as this bit (b	bit 29).
28	YUV 4:2:2 or 4:2:0 Mode: 0 = 4:2:2 mode; 1= 4:2:0	mode.	
	If 4:2:0 mode is selected, bits [3:2] should be set to 0	01 for 8-bit video mode and 10 f	or 16-bit video mode.
	Note: The GX-series processor does not support 4	:2:0 mode.	
27	Video Line Size (DWORDs): This is the MSB of the	Video Line Size (DWORDs). Se	ee bits [15:8] for description.
26	Reserved: Set to 0		
25	Early Video Ready: Generate VID_RDY output signation. 0 = Disable; 1 = Enable.		y to improve the speed of the video por
	If bit 30 is enabled, this bit (bit 25) should be set to 0).	
24	Initial Buffer Read Address: This is the MSB of the	e Initial Buffer Read Address. Se	e bits [23:16] for description.
23:16	Initial Buffer Read Address: This field is used to pu each display line. It is used for hardware clipping of t DWORD address of the source pixel which is to be c	the video window at the left edg	e of the active display. It represents the
15:8	Video Line Size (DWORDs): This field represents the	he horizontal size of the source	video data in DWORDs.
7	Y Filter Enable: Vertical filter. 0 = Disable; 1= Enabl	e.	
6	X Filter Enable: Horizontal filter. 0 = Disable; 1 = En	nable.	
5	CSC Bypass: Allows color-space-converter to be by than a YUV video overlay. 0 = Overlay data passes t		, , , ,
4	GV Select: Selects whether graphics or video data v $0 =$ Video data; $1 =$ Graphics data.	will be passed through the scale	r hardware.
3:2	Video Input Format: This field defines the byte orde	ering of the video data on the VI	D_DATA bus.
	8-Bit Mode (Value Byte Order [0:3])	16-Bit Mode (Value B	yte Order [0:3])
	00 = U Y0 V Y1 (also used for RGB 5:6:5 input)		used for RGB 5:6:5 input)
	$01 = Y1 \vee Y0 \cup or 4:2:0$	01 = Y0 U Y1 V	0
	10 = Y0 U Y1 V 11 = Y0 V Y1 U	10 = Y1 V Y0 U or 4:2 11 = Reserved	0
	If bit 28 is set for 4:2:0 mode, these bits (bits [3:2]) sl		mode and 10 for 16-bit video mode.
	Note: $U = Cb$, $V = Cr$		
1	Video Register Update: Allow video position and so vertical sync. 0 = Disable; 1 = Enable.	cale registers to be updated sim	ultaneously on next occurrence of
0	Video Enable: Video acceleration hardware. 0 = Dis	sable: 1 – Enable	

Г

Offset 04	h-07h Display Configuration Register (R/W) Reset Value = 00000000h
31	DDC Input Data (Read Only): This is the DDC input data bit for reads.
30:28	Reserved: Set to 0.
27	Flat Panel On (Read Only): This bit indicates whether the attached flat panel display is powered on or off. The bit transitions at the end of the power-up or power-down sequence. 0 = Off; 1 = On.
26	Reserved: Set to 0.
25	16-Bit Graphics Enable: This bit works in conjunction with the 16-bit Video Interface bit at F4BAR+Memory Offset 00h[29 This bit should be set to the same value as the 16-bit Video Interface bit.
24	DDC Output Enable: This bit enables the DDC_SDA line to be driven for write data. 0 = DDC_SDA (pin M4) is an input; 1 = DDC_SDA (pin M4) is an output.
23	DDC Output Data: This is the DDC data bit.
22	DDC Clock: This is the DDC clock bit. It is used to clock the DDC_SDA bit.
21	Palette Bypass: Selects whether graphics or video data should bypass the gamma RAM.0 = Video data; 1 = Graphics data.
20	Video/Graphics Color Key Select: Selects whether the video or graphics data stream will be used for color/chroma keying 0 = Graphics data is compared to color key; 1 = Video data is compared to color key.
19:17	Power Sequence Delay: This field selects the number of frame periods that transpire between successive transitions of the power sequence control lines. Valid values are 001 to 111.
16:14	CRT Sync Skew: This 3-bit field represents the number of pixel clocks to skew the horizontal and vertical syncs that are sent to the CRT. This field should be programmed to 100 as the baseline. The syncs may be moved forward or backward re ative to the pixel data via this register. It is used to compensate for the pipeline delay through the graphics pipeline.
13	Flat Panel Dither Enable: This bit enables flat panel dithering. It enables 24 bpp display data to be approximated with an 18-bit flat panel display. 0 = Disable; 1 = Enable.
12	XGA Flat Panel: This bit enables the FP_CLK_EVEN output signal which can be used to demultiplex the FP_DATA bus interven and odd pixels. 0 = Standard flat panel; 1 = XGA flat panel.
11	 Flat Panel Vertical Synchronization Polarity: Selects the flat panel vertical sync polarity. 0 = FP vertical sync is normally low, transitioning high during sync interval. 1 = FP vertical sync is normally high, transitioning low during sync interval.
10	 Flat Panel Horizontal Synchronization Polarity: Selects the flat panel horizontal sync polarity. 0 = FP horizontal sync is normally low, transitioning high during sync interval. 1 = FP horizontal sync is normally high, transitioning low during sync interval.
9	CRT Vertical Synchronization Polarity: Selects the CRT vertical sync polarity.
	 0 = CRT vertical sync is normally low, transitioning high during sync interval. 1 = CRT vertical sync is normally high, transitioning low during sync interval.
8	 CRT Horizontal Synchronization Polarity: Selects the CRT horizontal sync polarity. 0 = CRT horizontal sync is normally low, transitioning high during sync interval. 1 = CRT horizontal sync is normally high, transitioning low during sync interval.
7	Flat Panel Data Enable: Enables the flat panel data bus. 0 = FP_DATA [17:0] is forced low; 1 = FP_DATA [17:0] is driven based upon power sequence control.
6	Flat Panel Power Enable: The transition of this bit initiates a flat panel power-up or power-down sequence. 0 -> 1 = Power-up flat panel; 1 -> 0 = Power-down flat panel.
5	DAC Power-Down (active low): This bit must be set to power-up the video DACs. It can be cleared to power-down the video DACs when not in use. 0 = DACs are powered down; 1 = DACs are powered up.
4	Reserved: Set to 0.
3	DAC Blank Enable: This bit enables the blank to the video DACs. 0 = DACs are constantly blanked; 1 = DACs are blanked normally.
2	CRT Vertical Sync Enable: Enables the CRT vertical sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
1	CRT Horizontal Sync Enable: Enables the CRT horizontal sync. Used for VESA DPMS support. 0 = Disable; 1 = Enable.
0	Display Enable: Enables the graphics display pipeline. It is used as a reset for the display control logic. 0 = Reset display control logic; 1 = Enable display control logic.

Table 4-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

	Description		
Offset 08	n-0Bh Video X	(Register (R/W)	Reset Value = xxxxxxxx
31:27	Reserved: Set to 0.		
26:16	Video X End Position: This field represents the h formula. Position programmed = screen position +		
15:11	Reserved: Set to 0.		
10:0	Video X Start Position: This field represents the formula. Position programmed = screen position +		
Offset 0C	h-0Fh Video Y	<pre>/ Register (R/W)</pre>	Reset Value = xxxxxxx
31:27	Reserved: Set to 0.		
26:16	Video Y End Position: This field represents the ve Position programmed = screen position + (V_TOT)	•	vindow according to the following formul
15:11	Reserved: Set to 0.		
10:0	Video Y Start Position: This field represents the formula. Position programmed = screen position +	•	
Offset 10	h-13h Video Sca	ale Register (R/W)	Reset Value = xxxxxxx
31:30	Reserved: Set to 0.		
29:16	Video Y Scale Factor: This field represents the v formula. VID_Y_SCL = 8192 * (Ys - 1) / (Yd - 1) Where: Ys = Video source vertical size in lines Yd = Video destination vertical size in lin		according to the following
15:14	rd = video destination vertical size in in Reserved: Set to 0.	nes	
13:14	Video X Scale Factor: This field represents the v formula.	ideo window horizontal scale fac	tor according to the following
	VID_X_SCL = 8192 * (Xs - 1) / (Xd - 1) Where: Xs = Video source horizontal size in pix Xd = Video destination horizontal size ir		
Offset 14	n-17h Video Color	r Key Register (R/W)	Reset Value = xxxxxxx
31:24	Reserved: Set to 0.		
23:0	Video Color Key: This field represents the video compared may be masked prior to the compare by 18h) appropriately.		
	n-1Bh Video Color	Mask Register (R/W)	Reset Value = xxxxxxxx
Offset 18	Reserved: Set to 0.		
Offset 18 31:24			all a Z ana a la des servel access des
	Video Color Mask: This field represents the video corresponding bits in the graphics or video stream		alue. Zeroes in the mask cause the
31:24 23:0	corresponding bits in the graphics or video stream		Reset Value = xxxxxxx
31:24 23:0	corresponding bits in the graphics or video stream	being compared to be ignored.	
31:24 23:0 Offset 10	corresponding bits in the graphics or video stream h-1Fh Palette Add	n being compared to be ignored. Iress Register (R/W)	Reset Value = xxxxxxx
31:24 23:0 Offset 10 31:8 7:0	corresponding bits in the graphics or video stream h-1Fh Palette Add Reserved: Set to 0. Palette Address: The value programmed is used	n being compared to be ignored. Iress Register (R/W)	Reset Value = xxxxxxx
23:0 Offset 10 31:8	corresponding bits in the graphics or video stream h-1Fh Palette Add Reserved: Set to 0. Palette Address: The value programmed is used	h being compared to be ignored. Iress Register (R/W) to initialize the palette address of	Reset Value = xxxxxxxx

GeodeTM CS5530A

Register Descriptions (Continued)

Bit	Description	
Offset 24	DOT Clock Configuration Register (R/W)	Reset Value = 00000000h
31	Feedback Reset: Reset the PLL postscaler and feedback divider. 0 = Normal operat A more comprehensive reset description is provided in bit 8.	ion; 1 = Reset.
30	Half Clock: 0 = Enable; 1 = Disable.	
	For odd post divisors, half clock enables the falling edge of the VCO clock to be used to divider output to more closely approximate a 50% output duty cycle.	to generate the falling edge of the pos
29	Reserved: Set to 0.	
28:24	5-Bit DCLK PLL Post Divisor (PD) Value: Selects value of 1 to 31.	
	00000 = PD divisor of 8 $01000 = PD$ divisor of 10 $10000 = PD$ divisor of 9 $00001 = PD$ divisor of 6 $01001 = PD$ divisor of 20 $10001 = PD$ divisor of 7 $00010 = PD$ divisor of 18 $01010 = PD$ divisor of 14 $10010 = PD$ divisor of 1 $00011 = PD$ divisor of 4 $01011 = PD$ divisor of 26 $10011 = PD$ divisor of 5 $00100 = PD$ divisor of 12 $01100 = PD$ divisor of 22 $10100 = PD$ divisor of 1 $00111 = PD$ divisor of 16 $01101 = PD$ divisor of 28 $10101 = PD$ divisor of 1 $00110 = PD$ divisor of 24 $01110 = PD$ divisor of 30 $10110 = PD$ divisor of 2 $00111 = PD$ divisor of 2 $01111 = PD$ divisor of 1* $10111 = PD$ divisor of 3	11001 = PD divisor of 21 9 11010 = PD divisor of 15 11011 = PD divisor of 27 3 11100 = PD divisor of 23 7 11101 = PD divisor of 29 5 11110 = PD divisor of 31
23	 *See bit 11 description. Plus 1 (+1): Adds 1 or 0 to FD (DCLK PLL VCO Feedback Divisor) parameter in equ 0 = Add 0 to FD; 1 = Add 1 to FD. 	ation (see Note).
22:12	 N: This bit represents "N" in the equation (see Note). It is used to solve the value of F N can be a value of 1 to 400. For all values of N, refer to Table 4-24 on page 209. 	D (DCLK PLL VCO feedback divisor
11	CLK_ON: 0 = PLL disable; 1 = PLL enable. If PD = 1 (i.e., bits [28:24] = 01111) the F disabled by this bit.	PLL is always enabled and cannot be
10	DOT Clock Select: 0 = DCLK; 1 = TV_CLK.	
9	Reserved: Set to 0	
8	Bypass PLL: Connects the input of the PLL directly to the output of the PLL. 0 = Nor If this bit is set to 1, the input of the PLL bypasses the PLL and resets the VCO control the PLL. Allow 0.5 ms for the control voltage to be driven to 0V.	1 1
7:6	Reserved: Set to 0.	
5	Reserved (Read Only): Write as read	
4:3	Reserved: Set to 0.	
2:0	PLL Input Divide (ID) Value: Selects value of 2 to 9 (see Note).	
2.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	101 = ID divisor of 7 111 = ID divisor of 9
	To calculate DCLK output frequency: Equation #1: DCLK = [CLK_14MHZ * FD] ÷ [PD *ID] Condition: 140 MHz < [DCLK * PD] < 300 MHz Where: CLK_14MHZ is pin P24 FD is derived from N see equation #2 and #3 PD is derived from bits [28:24] ID is derived from bits [2:0] Equation #2: If FD is an odd number then: FD = 2*N +1 Equation #3: If FD is an even number then: FD = 2*N +0 Where: N is derived from bits [22:12] +1 is achieved by setting bit 23 to 1. +0 is achieved by clearing bit 23 to 0.	

Table 4-23. F4BAR+Memory Offset xxh: Video Controller Configuration Registers (Continued)

Table 4-23. F4BAR+Memory Offset xxh: Video Controlle	r Configuration Registers	(Continued)
--	---------------------------	-------------

Bit	Description	
Offset 28h	-2Bh CRC Signature and TFT/TV Configuration Register (R/W)	Reset Value = 00000100h
31:8	24-Bit Video Signature Data (Read Only)	
7	SYNC Override: Drive VSYNC_OUT on FP_VSYNC_OUT and HSYNC_OUT on FP_HSY 0 = Disable; 1 = Enable.	NC_OUT.
6	Invert FP_CLK: 0 = Disable; 1 = Enable. (Applicable for TV not TFT.)	
5	Invert FP_CLK_EVEN: 0 = Disable; 1 = Enable.	
4	Reserved (Read Only)	
3	Signature Source Select: 0 = RGB data; 1 = FP data. (FP data occupies the top 6 bits of with the bottom two bits always zero.)	each color byte to the signature,
2	Signature Free Run: 0 = Disable; 1 = Enable.	
	When high, with the signature enabled, the signature generator captures data continuously may be set high when the signature is started, then later set low, which causes the signatu the end of the current frame.	•
1	FP_HSYNC_OUT Delay: 0 = Disable; 1 = Enable. (Applicable for TFT not TV.)	
	When SYNC Override (bit 7) is high, this bit (bit 1) can be set high to delay FP_HSYNC_OW When the SYNC Override (bit 7) is low, this bit should also be set low.	UT by an extra two clock cycles.
0	Signature Enable: 0 = Disable; 1= Enable.	
	When low, the signature register is reset to 000001h and held (no capture). When high, the pixel data signature with each pixel clock beginning with the next vsync.	e signature register captures the
Offset 2Ch	-FFh Reserved	Reset Value = xxh

Table 4-24.	I. F4BAR+Memory Offset 24h[22:12] Decode	(Value of "N")
-------------	--	----------------

			Table	4-24	. 14	DANT			y Offs	σι 4	2411[4		De	LOUE	: (vaiu	eu)			
N	Reg. Value	N	Reg. Value		N	Reg. Value		N	Reg. Value		N	Reg. Value		N	Reg. Value		N	Reg. Value		N	Reg. Value
400	33A	349	23		298	331		247	7D0		196	143		145	551		94	19E		43	161
399	674	348	47		297	662		246	7A1		195	286		144	2A3		93	33C		42	2C2
398	4E8	347	8F	-	296	4C4		245	743		194	50D		143	547		92	678		41	585
397	1D0	346	-	-	295	188		244	687		193	21B		142	28F		91	4F0		40	30B
396	3A0	345	23E	-	294	310		243	50E		192	437		141	51F		90	1E0		39	616
395	740	344	47D	_	293	620		242	21D		191	6E		140	23F		89	3C0		38	42C
394	681	343		-	292	440		241	43B		190	DD		139	47F		88	780		37	58
393	502	342			291	80		240	76		189	1BB		138	FE		87	701		36	B1
392	205	341	3EA		290	101		239	ED		188	376		137	1FD		86	603		35	163
391	40B	340	-	-	289	202		238	1DB		187	6EC		136	3FA		85	406		34	2C6
390	16	339	7A9	-	288	405		237	3B6		186	5D8		135	7F4		84	C	-	33	58D
389	2D	338	753	-	287	A		236	76C		185	3B1		134	7E9		83	19		32	31B
388	5B	337	6A7	-	286	15		235	6D9		184	762		133	7D3		82	33	-	31	636
387	B7 16F	336		-	285	2B 57		234	5B2		183	6C5		132	7A7 74F		81	67 CF		30 29	46C D8
386	2DE	335 334	-	-	284	57 AF		233 232	365 6CA		182	58A		131	69F		80 79	19F		29 28	1B1
385 384	5BD	333		-	283 282	15F		232	594		181 180	315 62A		130 129	53E		79	33E		20	362
383	360 37B	332		-	281	2BE		231	329		179	454		129	27D		77	67C		26	6C4
382	6F6	331	1DE	-	280	57D		229	652		179	434 A8		120	4FB		76	4F8		20	588
381	5EC	330	3BC		200	2FB		223	4A4		177	151		127	1F6		75	1F0		23	311
380	3D9	329	778	-	278	5F7		227	148		176	2A2		125	3EC		74	3E0		23	622
379	7B2	328	6F1	-	277	3EF		226	290		175	545		124	7D8		73	7C0		22	444
378	765	327	5E2	-	276	7DE		225	521		174	28B		123	7B1		72	781	1	21	88
377	6CB	326	3C5	_	275	7BD		224	243		173	517		122	763		71	703	1	20	111
376	596	325	78A	_	274	77B		223	487		172	22F		121	6C7		70	607	1	19	222
375	32D	324	715	-	273	6F7		222	10E		171	45F		120	58E		69	40E	1	18	445
374	65A	323	62B		272	5EE		221	21C		170	BE		119	31D		68	1C	1	17	8A
373	4B4	322	456		271	3DD		220	439		169	17D		118	63A		67	39	1	16	115
372	168	321	AC		270	7BA		219	72		168	2FA		117	474		66	73	1	15	22A
371	2D0	320	159		269	775		218	E5		167	5F5		116	E8		65	E7	1	14	455
370	5A1	319	2B2	1	268	6EB		217	1CB		166	3EB		115	1D1		64	1CF] [13	AA
369	343	318	565	1	267	5D6		216	396		165	7D6		114	3A2		63	39E] [12	155
368	686	317	2CB		266	3AD		215	72C		164	7AD		113	744		62	73C		11	2AA
367	50C	316	597		265	75A		214	659		163	75B		112	689		61	679		10	555
366	219	315	32F		264	6B5		213	4B2		162	6B7		111	512		60	4F2		9	2AB
365	433	314	65E		263	56A		212	164		161	56E		110	225		59	1E4		8	557
364	66	313		-	262	2D5		211	2C8		160	2DD		109	44B		58	3C8		7	2AF
363	CD	312		-	261	5AB		210	591		159	5BB		108	96		57	790		6	55F
362	19B	311	2F0		260	357		209	323		158	377		107	12D		56	721		5	2BF
361	336	310	5E1	-	259	6AE		208	646		157	6EE		106	25A		55	643		4	57F
360	66C	309		-	258	55C		207	48C		156	5DC		105	4B5		54	486		3	2FF
359	4D8	308	-		257	2B9		206	118		155	3B9		104	16A		53	10C		2	5FF
358	1B0	307		-	256	573		205	230		154	772		103	2D4		52	218		1	3FF
357	360	306	-	-	255	2E7		204	461		153	6E5		102	5A9		51	431	-		
356	6C0	305	-	-	254	5CF		203	C2		152	5CA		101	353		50	62	-		
355 354	580 201	304		-	253	39F		202	185		151	395		100	6A6		49	C5	1		
-	301	303		-	252 251	73E		201	30A		150	72A		99	54C		48	18B	1		
353	602	302	-	-	251 250	67D 4FA		200 199	614 428		149	655		98	299		47	316 62C	1		
352 351	404 8	301 300			250 249	4FA 1F4		199	428 50		148 147	4AA 154		97 96	533 267		46 45	62C 458	1		
351	0 11	299	-		249 248	3E8		198	50 A1		147	2A8		96 95	4CF		45 44	458 B0	1		
550	- 11	299	230	JL	∠40	500	I	131	AL		140	2140	I	30	40F	I l	44	ЪU	J		

Geode™ CS5530A

4.4 USB REGISTERS

The USB Host Controller exists logically as its own PCI "Device", separate from the Chipset functions. It is a single-function device, and so it contains a PCI Configuration space for only Function 0. Depending on the state of the HOLD_REQ# pin on reset, the USB Controller will respond to one of two Device numbers for access to its PCI Configuration registers:

HOLD_REQ# low: Responds to pin AD29 high (Device 13h in a Geode system).

HOLD_REQ# high: Responds to pin AD27 high (Device 11h in a Geode system).

The PCI Configuration registers are listed in Table 4-25. They can be accessed as any number of bytes within a single 32-bit aligned unit. They are selected by the PCI-standard Index and Byte-Enable method. Registers marked as "Reserved", and reserved bits within a register, should not be changed by software.

In the PCI Configuration space, there is one Base Address Register (BAR), at Index 10h, which is used to map the USB Host Controller's operational register set into a 4K memory space. Once the BAR register has been initialized, and the PCI Command register at Index 04h has been set to enable the Memory space decoder, these "USB Controller" registers are accessible.

The memory-mapped USB Controller Registers are listed in Table 4-26. They follow the Open Host Controller Interface (OHCI) specification.

Bit	Description	
Index 00h-	01h Vendor Identification Register (RO)	Reset Value = 0E11h
Index 02h-	03h Device Identification Register (RO)	Reset Value = A0F8h
Index 04h-	05h Command Register (R/W)	Reset Value = 0000h
15:10	Reserved: Set to 0.	
9	Fast Back-to-Back Enable (Read Only): USB only acts as a master to a single device, so this It is always disabled (must always be set to 0).	functionality is not needed.
8	SERR#: USB asserts SERR# when it detects an address parity error. 0 = Disable; 1 = Enable.	
7	Wait Cycle Control: USB does not need to insert a wait state between the address and data or disabled (bit is set to 0).	n the AD lines. It is always
6	Parity Error: USB asserts PERR# when it is the agent receiving data and it detects a data parit 0 = Disable; 1 = Enable.	ty error.
5	VGA Palette Snoop Enable (Read Only): USB does not support this function. It is always disa	bled (bit is set to 0).
4	Memory Write and Invalidate: Allow USB to run Memory Write and Invalidate commands. 0 =	Disable; 1 = Enable.
	The Memory Write and Invalidate command will only occur if the cache line size is set to 32 byte exactly one cache line.	es and the memory write is
	If the CS5530A is being used in a GX-series processor based system, this bit must be set to 0.	
3	Special Cycles: USB does not run special cycles on PCI. It is always disabled (bit is set to 0).	
2	PCI Master Enable: Allow USB to run PCI master cycles. 0 = Disable; 1 = Enable.	
1	Memory Space: Allow USB to respond as a target to memory cycles. 0 = Disable; 1 = Enable.	
0	I/O Space: Allow USB to respond as a target to I/O cycles. 0 = Disable; 1 = Enable.	

Table 4-25. USB Index xxh: USB PCI Configuration Registers

Register Descriptions (Continued)

Table 4-25. USB Index xxh: USB PCI Configuration Registers (Continued)

Bit	Description		
Index 06h	-07h Status Register (R/W)	Reset Value = 0280h	
15	Detected Parity Error: This bit is set whenever the USB detects a parity error, even if the Pari enable bit (PCIUSB 04h[6]) is disabled. Write 1 to clear.	ty Error (response) detection	
14	SERR# Status: This bit is set whenever the USB detects a PCI address error. Write 1 to clear		
13	Received Master Abort Status: This bit is set when the USB, acting as a PCI master, aborts Write 1 to clear.	a PCI bus memory cycle.	
12	Received Target Abort Status: This bit is set when a USB generated PCI cycle (USB is the F PCI target. Write 1 to clear.	PCI master) is aborted by a	
11	Signaled Target Abort Status: This bit is set whenever the USB signals a target abort. Write	1 to clear.	
10:9	DEVSEL# Timing (Read Only): These bits indicate the DEVSEL# timing when performing a p DEVSEL# is asserted to meet the medium timing, these bits are encoded as 01b.	positive decode. Since	
8	Data Parity Reported: Set to 1 if the Parity Error Response bit (Command Register bit 6) is set asserted while acting as PCI master (whether PERR# was driven by USB or not).	et, and USB detects PERR#	
7	Fast Back-to-Back Capable (Read Only): USB does support fast back-to-back transactions w to the same agent. This bit is always 1.	when the transactions are not	
6:0	Reserved: Set to 0.		
	PCI specification defines this register to record status information for PCI related events. This is r, writes can only reset bits. A bit is reset whenever the register is written and the data in the cor		
Index 08h	Device Revision ID Register (RO)	Reset Value = 06h	
Index 09h	-0Bh PCI Class Code Register (RO)	Reset Value = 0C0310h	
This regist	er identifies this function as an OpenHCI device. The base class is 0Ch (serial bus controller). Th . The programming interface is 10h (OpenHCI).	ne sub class is 03h (universal	
-			
serial bus). Index 0Ch	Cache Line Size Register (R/W)	Reset Value = 00h e of bit 3 in this register since	
serial bus) Index 0Ch This registe the cache I 00h.		e of bit 3 in this register since o this register is read back as	
serial bus) Index 0Ch This registe the cache I 00h. In a CS553	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc	e of bit 3 in this register since o this register is read back as	
serial bus) Index 0Ch This registe the cache I 00h. In a CS553 line size. Index 0Dh	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache	
serial bus) Index 0Ch This registe the cache I 00h. In a CS553 line size. Index 0Dh	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles.	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache	
serial bus) Index 0Ch This registr the cache l 00h. In a CS553 line size. Index 0Dh This registr Index 0Eh This registr	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles.	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h Reset Value = 00h	
serial bus) Index 0Ch This registr the cache l 00h. In a CS553 line size. Index 0Dh This registr Index 0Eh This registr	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a sing I bridge, this byte should be read as 00h.	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h Reset Value = 00h	
serial bus) Index 0Ch This registr the cache l 00h. In a CS553 line size. Index 0Dh This registr PCI-to-PCI Index 0Fh	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a sing I bridge, this byte should be read as 00h.	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h Reset Value = 00h gle function device and not a Reset Value = 00h	
serial bus) Index 0Ch This registe the cache I 00h. In a CS553 line size. Index 0Dh This registe PCI-to-PCI Index 0Fh This registe	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a sing I bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only.	
serial bus) Index 0Ch This registr the cache l 00h. In a CS553 line size. Index 0Dh This registr PCI-to-PCI Index 0Fh This registr Index 10h This BAR s	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series proc Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a sing I bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so th	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 0000000h (0000 0000 0000),	
serial bus) Index 0Ch This registr the cache l 00h. In a CS553 line size. Index 0Dh This registr PCI-to-PCI Index 0Fh This registr Index 10h This BAR s	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a since I bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the 13h Base Address Register (R/W) sets the base address of the memory mapped USB controller registers. Bits [11:0] are read only	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 0000000h (0000 0000 0000),	
serial bus) Index 0Ch This regist the cache I 00h. In a CS553 Index 0Dh This regist PCI-to-PCI Index 0Fh This regist Index 0Fh This regist Index 10h This BAR s indicating a	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system in PCI clocks for PCI bus master cycles. Image: Colspan="2">Latency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a since bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the 13h Base Address Register (R/W) sets the base address of the memory mapped USB controller registers. Bits [11:0] are read only a 4 KB memory address range. Refer to Table 4-26 for the USB controller register bit formats and the formate and	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 0000000h (0000 0000 0000),	
serial bus) Index 0Ch This registe the cache I 00h. In a CS553 line size. Index 0Dh This registe PCI-to-PCI Index 0Fh This registe Index 10h This BAR s indicating a 31:12	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the value of the predefined header in the configuration space. Since the USB is a since I bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the 13h Base Address Register (R/W) ests the base address of the memory mapped USB controller registers. Bits [11:0] are read only a 4 KB memory address range. Refer to Table 4-26 for the USB controller register bit formats and USB Controller Base Address Address Range (Read Only)	e of bit 3 in this register since o this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 0000000h (0000 0000 0000),	
serial bus) Index 0Ch This regist the cache I 00h. In a CS553 Index 0Dh This regist Index 0Ch This regist PCI-to-PCI Index 0Fh This regist Index 10h This BAR s indicating a 31:12 11:0	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register from the configuration space. automative of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a since bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the trans and the memory mapped USB controller registers. Bits [11:0] are read only at 4 KB memory address range. Refer to Table 4-26 for the USB controller register bit formats and USB Controller Base Address Address Range (Read Only) -3Bh Reserved	e of bit 3 in this register since of bit 3 in this register since of this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 0000000h (0000 0000 0000), d reset values.	
serial bus) Index 0Ch This registr the cache I 00h. In a CS553 line size. Index 0Dh This registr PCI-to-PCI Index 0Fh This registr Index 10h This BAR s indicating a 31:12 11:0 Index 3Ch This registr	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register from the configuration space. automative of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a since bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the trans and the memory mapped USB controller registers. Bits [11:0] are read only at 4 KB memory address range. Refer to Table 4-26 for the USB controller register bit formats and USB Controller Base Address Address Range (Read Only) -3Bh Reserved	e of bit 3 in this register since of this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 00000000h (0000 0000 0000), d reset values. Reset Value = xxh Reset Value = 00h	
serial bus) Index 0Ch This registe the cache l 00h. In a CS553 line size. Index 0Dh This registe PCI-to-PCI Index 0Fh This registe Index 10h This BAR s indicating a 31:12 11:0 Index 3Ch This registe	Cache Line Size Register (R/W) er identifies the system cache line size in units of 32-bit WORDs. The USB only stores the value line size of 32 bytes is the only value applicable to the design. Any value other than 08h written to 30A/GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register must be set to 00h since the GX-series processor based system this register for R/W) Eatency Timer Register (R/W) er identifies the value of the latency timer in PCI clocks for PCI bus master cycles. Header Type Register (RO) er identifies the type of the predefined header in the configuration space. Since the USB is a since I bridge, this byte should be read as 00h. BIST Register (RO) er identifies the control and status of Built In Self Test. The USB does not implement BIST, so the 13h Base Address Register (R/W) er identifies the base address of the memory mapped USB controller registers. Bits [11:0] are read only a 4 KB memory address range. Refer to Table 4-26 for the USB controller register bit formats an USB Controller Base Address Address Range (Read Only) <td colspan<="" td=""><td>e of bit 3 in this register since of this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 00000000h (0000 0000 0000), d reset values. Reset Value = xxh Reset Value = 00h</td></td>	<td>e of bit 3 in this register since of this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 00000000h (0000 0000 0000), d reset values. Reset Value = xxh Reset Value = 00h</td>	e of bit 3 in this register since of this register is read back as cessor has a 16-byte cache Reset Value = 00h gle function device and not a Reset Value = 00h is register is read only. Reset Value = 00000000h (0000 0000 0000), d reset values. Reset Value = xxh Reset Value = 00h

Register Descriptions (Continued)

Table 4-25. USB Index xxh: USB PCI Configuration Registers (Continued)

Min. Grant Register (RO)

Reset Value = 00h

Reset Value = 50h

Reset Value = 000F0000h

This register specifies the desired settings for how long of a burst the USB needs assuming a clock rate of 33 MHz. The value specifies a period of time in units of 1/4 microsecond.

Index 3Fh

Index 3Eh

Max. Latency Register (RO) This register specifies the desired settings for how often the USB needs access to the PCI bus assuming a clock rate of 33 MHz. The value specifies a period of time in units of 1/4 microsecond.

Index 40h-43h

ASIC Test Mode Enable Register (R/W)

Used for internal debug and test purposes only.

03001011		
Index 44h	-45h ASIC Operational Mode Enable Register (R/W)	Reset Value = 0000h
15:9	Reserved: Read/Write 0s.	
8	SIE Pipeline Disable: When set, waits for all USB bus activity to complete prior to returnin Processor. This is a fail-safe mechanism to avoid potential problems with the clk_dr transit MHz.	a 1
7:1	Write Only: Read as 0s.	
0	Data Buffer Region 16: When set, the size of the region for the data buffer is 16 bytes. O	therwise, the size is 32 bytes.
Index 46h	-47h Reserved	Reset Value = 00h
Index 48h	-FFh Reserved	Reset Value = xxh

Register Descriptions (Continued)

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers

	Description		
Offset 00h	-03h	HcRevision Register (RO)	Reset Value = 00000110h
31:8	Reserved: Read/Write 0s.		
7:0	Revision (Read Only): Indicate ports 1.0 specification. (X.Y = X	es the Open HCI Specification revision number im Yh).	plemented by the Hardware. USB sup-
Offset 04h	-07h	HcControl Register (R/W)	Reset Value = 00000000h
31:11	Reserved: Read/Write 0s.		
10	RemoteWakeupConnectedEn no remote wakeup signal suppo	able: If a remote wakeup signal is supported, this orted, this bit is ignored.	s bit enables that operation. Since there is
9		ead Only): This bit indicated whether the HC sup such signal. The bit is hard-coded to 0.	oports a remote wakeup signal. This imple-
8	InterruptRouting: This bit is us 1 = Interrupts routed to SMI.	ed for interrupt routing: 0 = Interrupts routed to n	ormal interrupt mechanism (INT);
7:6		e: This field sets the HC state. The HC may force ume signaling from a downstream port. States are	
5	BulkListEnable: When set, this	s bit enables processing of the Bulk list.	
4	ControlListEnable: When set,	this bit enables processing of the Control list.	
3	IsochronousEnable: When clear, this bit disables the Isochronous List when the Periodic List is enabled (so Interrupt ED may be serviced). While processing the Periodic List, the HC will check this bit when it finds an isochronous ED.		· ·
2	PeriodicListEnable: When set, this bit enables processing of the Periodic (interrupt and isochronous) list. The HC checks this bit prior to attempting any periodic transfers in a frame.		rupt and isochronous) list. The HC checks
1:0		ecifies the number of Control Endpoints serviced of Endpoints (i.e., 00 = 1 Control Endpoint; 11 = 3	
Offset 08h	-0Bh	HcCommandStatus Register (R/W)	Reset Value = 00000000h
31:18	Reserved: Read/Write 0s.		
17:16	ScheduleOverrunCount: This wraps from 11 to 00.	field increments every time the SchedulingOverru	In bit in HcInterruptStatus is set. The count
	widpo ironi i i to oo.		
15:4	Reserved: Read/Write 0s.		
15:4 3	Reserved: Read/Write 0s.	Vhen set by software, this bit sets the OwnershipC	Change field in HcInterruptStatus. The bit is
	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t	When set by software, this bit sets the OwnershipC there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List.	
3	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t cleared by the HC each time it b ControlListFilled: Set to indica	there is an active ED on the Bulk List. The bit may	y be set by either software or the HC and
3 2	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t cleared by the HC each time it b ControlListFilled: Set to indicate cleared by the HC each time it b	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Ite there is an active ED on the Control List. It ma	y be set by either software or the HC and ny be set by either software or the HC and
3 2 1 0	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to ControlListFilled: Set to indicate cleared by the HC each time it to HostControllerReset: This bit is operation.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Ite there is an active ED on the Control List. It ma begins processing the head of the Control List.	y be set by either software or the HC and ny be set by either software or the HC and
3 2 1 0	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to ControlListFilled: Set to indicate cleared by the HC each time it to HostControllerReset: This bit is operation.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Ite there is an active ED on the Control List. It ma begins processing the head of the Control List. is set to initiate a software reset. This bit is cleare	y be set by either software or the HC and y be set by either software or the HC and ed by the HC upon completion of the reset
3 2 1 0 Offset 0Ch	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t cleared by the HC each time it b ControlListFilled: Set to indicate cleared by the HC each time it b HostControllerReset: This bit i operation. h-OFh Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. Ite there is an active ED on the Control List. It ma begins processing the head of the Control List. is set to initiate a software reset. This bit is cleare	y be set by either software or the HC and ay be set by either software or the HC and ad by the HC upon completion of the reset Reset Value = 00000000h
3 2 1 0 Offset 0Ch 31	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t cleared by the HC each time it b ControlListFilled: Set to indicate cleared by the HC each time it b HostControllerReset: This bit i operation. h-OFh Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It ma begins processing the head of the Control List. Is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W)	y be set by either software or the HC and ay be set by either software or the HC and ad by the HC upon completion of the reset Reset Value = 00000000h
3 2 1 0 0 0 0 ffset 0Ch 31 30	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it be ControlListFilled: Set to indicate cleared by the HC each time it be HostControllerReset: This bit is operation. h-0Fh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It ma begins processing the head of the Control List. Is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W)	y be set by either software or the HC and ay be set by either software or the HC and ed by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set.
3 2 1 0 0 0 0 ffset 0 Ch 31 30 29:7	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate t cleared by the HC each time it b ControlListFilled: Set to indica cleared by the HC each time it b HostControllerReset: This bit i operation. h-0Fh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This bit changed.	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It there is an active ED on the Control List. It may begins processing the head of the Control List. Is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of He	y be set by either software or the HC and ay be set by either software or the HC and ed by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set.
3 2 1 0 0 0 ffset 0Ch 31 30 29:7 6	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to ControlListFilled: Set to indicate cleared by the HC each time it to HostControllerReset: This bit is operation. h-OFh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This to changed. FrameNumberOverflow: Set w	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of He bit is set when the content of HcRhStatus or the c	y be set by either software or the HC and ay be set by either software or the HC and ad by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set.
3 2 1 0 0 0 0 ffset 0Ch 31 30 29:7 6 5	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to ControlListFilled: Set to indicate cleared by the HC each time it to HostControllerReset: This bit is operation. -OFh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This to changed. FrameNumberOverflow: Set w UnrecoverableError (Read On	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It there is an active ED on the Control List. It ma begins processing the head of the Control List. Is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of He bit is set when the content of HcRhStatus or the c when bit 15 of FrameNumber changes value.	y be set by either software or the HC and y be set by either software or the HC and ed by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set. content of any HcRhPortStatus register has pded to 0. Writes are ignored.
3 2 1 0 0 0 0 ffset 0Ch 31 30 29:7 6 5 4	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it be ControlListFilled: Set to indicate cleared by the HC each time it be HostControllerReset: This bit is operation. -0Fh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This bit changed. FrameNumberOverflow: Set w UnrecoverableError (Read On ResumeDetected: Set when Hit	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. Is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of Ho bit is set when the content of HcRhStatus or the c when bit 15 of FrameNumber changes value. Ity): This event is not implemented and is hard-co C detects resume signaling on a downstream por	y be set by either software or the HC and ay be set by either software or the HC and ed by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set. content of any HcRhPortStatus register has baded to 0. Writes are ignored. rt.
3 2 1 0 0 0 0 ffset 0 Ch 31 30 29:7 6 5 4 3	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it to ControlListFilled: Set to indicate cleared by the HC each time it to HostControllerReset: This bit it operation. -0Fh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This bit changed. FrameNumberOverflow: Set w UnrecoverableError (Read On ResumeDetected: Set when He	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of He bit is set when the content of HcRhStatus or the c when bit 15 of FrameNumber changes value.	y be set by either software or the HC and ay be set by either software or the HC and ad by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set. content of any HcRhPortStatus register has baded to 0. Writes are ignored. rt. e event.
3 2 1 0 0 0 0 ffset 0Ch 31 30 29:7 6 5 4 3 2	Reserved: Read/Write 0s. OwnershipChangeRequest: W cleared by software. BulkListFilled: Set to indicate to cleared by the HC each time it be ControlListFilled: Set to indicate cleared by the HC each time it be HostControllerReset: This bit is operation. -OFh Reserved: Read/Write 0s. OwnershipChange: This bit is Reserved: Read/Write 0s. RootHubStatusChange: This bit changed. FrameNumberOverflow: Set w UnrecoverableError (Read On ResumeDetected: Set when the Fr WritebackDoneHead: Set after	there is an active ED on the Bulk List. The bit may begins processing the head of the Bulk List. It the there is an active ED on the Control List. It may begins processing the head of the Control List. It is set to initiate a software reset. This bit is cleare HcInterruptStatus Register (R/W) set when the OwnershipChangeRequest bit of He bit is set when the content of HcRhStatus or the c when bit 15 of FrameNumber changes value. It is event is not implemented and is hard-coc C detects resume signaling on a downstream por rame Management block signals a Start of Frame	y be set by either software or the HC and ay be set by either software or the HC and ad by the HC upon completion of the reset Reset Value = 00000000h cCommandStatus is set. content of any HcRhPortStatus register has boded to 0. Writes are ignored. rt. e event. dead.

Register Descriptions (Continued) Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued) Bit Description Offset 10h-13h Reset Value = 0000000h HcInterruptEnable Register (R/W) 31 MasterInterruptEnable: This bit is a global interrupt enable. A write of 1 allows interrupts to be enabled via the specific enable bits listed above. 30 **OwnershipChangeEnable:** 0 = Ignore; 1 = Enable interrupt generation due to Ownership Change. 29:7 Reserved: Read/Write 0s 6 RootHubStatusChangeEnable: 0 = Ignore; 1 = Enable interrupt generation due to Root Hub Status Change. 5 FrameNumberOverflowEnable: 0 = Ignore; 1 = Enable interrupt generation due to Frame Number Overflow. 4 UnrecoverableErrorEnable: This event is not implemented. All writes to this bit are ignored. 3 ResumeDetectedEnable: 0 = Ignore; 1 = Enable interrupt generation due to Resume Detected. 2 StartOfFrameEnable: 0 = Ignore; 1 = Enable interrupt generation due to Start of Frame. 1 WritebackDoneHeadEnable: 0 = Ignore; 1 = Enable interrupt generation due to Writeback Done Head. SchedulingOverrunEnable: 0 = Ignore; 1 = Enable interrupt generation due to Scheduling Overrun. Λ Note: Writing a 1 to a bit in this register sets the corresponding bit, while writing a 0 leaves the bit unchanged. Offset 14h-17h HcInterruptDisable Register (R/W) Reset Value = C000006Fh 31 MasterInterruptEnable: Global interrupt disable. A write of 1 disables all interrupts. OwnershipChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to Ownership Change. 30 29:7 Reserved: Read/Write 0s 6 RootHubStatusChangeEnable: 0 = Ignore; 1 = Disable interrupt generation due to Root Hub Status Change. 5 FrameNumberOverflowEnable: 0 = Ignore; 1 = Disable interrupt generation due to Frame Number Overflow. 4 UnrecoverableErrorEnable: This event is not implemented. All writes to this bit will be ignored. 3 ResumeDetectedEnable: 0 = Ignore; 1 = Disable interrupt generation due to Resume Detected. 2 StartOfFrameEnable: 0 = Ignore; 1 = Disable interrupt generation due to Start of Frame. WritebackDoneHeadEnable: 0 = Ignore; 1 = Disable interrupt generation due to Writeback Done Head. 1 0 SchedulingOverrunEnable: 0 = Ignore; 1 = Disable interrupt generation due to Scheduling Overrun. Note: Writing a 1 to a bit in this register clears the corresponding bit, while writing a 0 to a bit leaves the bit unchanged. Offset 18h-1Bh HcHCCA Register (R/W) Reset Value = 0000000h 31:8 HCCA: Pointer to HCCA base address. 7:0 Reserved: Read/Write 0s Offset 1Ch-1Ch HcPeriodCurrentED Register (R/W) Reset Value = 0000000h 31:4 PeriodCurrentED: Pointer to the current Periodic List ED. Reserved: Read/Write 0s 3.0 Offset 20h-23h HcControlHeadED Register (R/W) Reset Value = 00000000h ControlHeadED: Pointer to the Control List Head ED. 31:4 3:0 Reserved: Read/Write 0s Offset 24h-27h HcControlCurrentED Register (R/W) Reset Value = 00000000h 31:4 ControlCurrentED: Pointer to the current Control List ED. 3:0 Reserved: Read/Write 0s Offset 28h-2Bh HcBulkHeadED Register (R/W) Reset Value = 00000000h 31:4 BulkHeadED: Pointer to the Bulk List Head ED. 3:0 Reserved: Read/Write 0s. Offset 2Ch-2Fh HcBulkCurrentED Register (R/W) Reset Value = 0000000h 31:4 BulkCurrentED: Pointer to the current Bulk List ED. 3:0 Reserved: Read/Write 0s Offset 30h-33h HcDoneHead Register (R/W) Reset Value = 0000000h

31:4

3:0

DoneHead: Pointer to the current Done List Head ED.

Reserved: Read/Write 0s.

Register Descriptions (Continued)

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description		
Offset 34I	h-37h HcFmInterval Reg	gister (R/W) Reset Value = 00002EDFI	
31	FrameIntervalToggle (Read Only): This bit is toggled by	/ HCD when it loads a new value into FrameInterval.	
30:16	FSLargestDataPacket (Read Only): This field specifies the beginning of each frame.	LargestDataPacket (Read Only): This field specifies a value which is loaded into the Largest Data Packet Counter at beginning of each frame.	
15:14	Reserved: Read/Write 0s.		
13:0	FrameInterval: This field specifies the length of a frame a is stored here.	as (bit times - 1). For 12,000 bit times in a frame, a value of 11,99	
Offset 38I	h-3Bh HcFrameRemaining	Register (RO) Reset Value = 00002Exxl	
31	FrameRemainingToggle (Read Only): Loaded with Fran	meIntervalToggle when FrameRemaining is loaded.	
30:14	Reserved: Read 0s.		
13:0	meRemaining (Read Only): When the HC is in the UsbOperational state, this 14-bit field decrements each 12 MHz ck period. When the count reaches 0, (end of frame) the counter reloads with FrameInterval. In addition, the counter ds when the HC transitions into UsbOperational.		
Offset 3C	Ch-3Fh HcFmNumber Re	egister (RO) Reset Value = 00000000	
31:16	Reserved: Read 0s.		
15:0	FrameNumber (Read Only): This 16-bit incrementing counter field is incremented coincident with the loading of FrameR maining. The count rolls over from FFFFh to 0h.		
Offset 40	h-43h HcPeriodicStart Re	egister (R/W) Reset Value = 00000000	
31:14	Reserved: Read/Write 0s.		
13:0	PeriodicStart: This field contains a value used by the Lis cessing must begin.	eriodicStart: This field contains a value used by the List Processor to determine where in a frame the Periodic List pro essing must begin.	
Offset 44	h-47h HcLSThreshold Re	egister (R/W) Reset Value = 00000628	
31:12	Reserved: Read/Write 0s.		
11:0	LSThreshold: This field contains a value used by the Fra transaction can be started in the current frame.	ame Management block to determine whether or not a low speed	
Offset 48	h-4Bh HcRhDescriptorA R	Register (R/W) Reset Value = 01000002	
31:24	PowerOnToPowerGoodTime: This field value is represented as the number of 2 ms intervals, ensuring that the power switching is effective within 2 ms. Only bits [25:24] are implemented as R/W. The remaining bits are read only as 0. It is r expected that these bits be written to anything other than 1h, but limited adjustment is provided. This field should be writt to support system implementation. This field should always be written to a non-zero value.		
23:13	Reserved: Read/Write 0s.		
12	NoOverCurrentProtection: This bit should be written to Over-current status is reported; 1 = Over-current status is	support the external system port over-current implementation. 0 s not reported.	
11	OverCurrentProtectionMode: This bit should be written Global Over-Current; 1 = Individual Over-Current	n 0 and is only valid when NoOverCurrentProtection is cleared. 0	
10	DeviceType (Read Only): USB is not a compound device		
9	NoPowerSwitching: This bit should be written to suppor Ports are power switched. 1 = Ports are always powered	t the external system port power switching implementation. 0 = on.	
8	PowerSwitchingMode: This bit is only valid when NoPo Switching; 1 = Individual Switching	werSwitching is cleared. This bit should be written 0. 0 = Global	
7:0	NumberDownstreamPorts (Read Only): USB supports	s two downstream ports.	

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description	
Offset 4C	h-4Fh HcRhDescriptorB Register (R/W)	Reset Value = 00000000h
31:16	PortPowerControlMask: Global-power switching. This field is only valid if NoPowerSo ingMode is set (individual port switching). When set, the port only responds to individu (Set/ClearPortPower). When cleared, the port only responds to global power switching 0 = Device not removable; 1 = Global-power mask. Port Bit relationship - Unimplemented ports are reserved, read/write 0. 0 = Reserved 1 = Port 1 2 = Port 2 	ual port power switching commands
15:0	15 = Port 15 DeviceRemoveable: USB ports default to removable devices. 0 = Device not remova	philo: 1 - Dovico romovablo
	Port Bit relationship 0 = Reserved 1 = Port 1 2 = Port 2 15 = Port 15 Unimplemented ports are reserved, read/write 0.	
Note: Thi	s register is only reset by a power-on reset (PCIRST#). It is written during system initiali	ization to configure the Root Hub.
	ese bit should not be written during normal operation.	
The		Reset Value = 00000000h
The		Reset Value = 00000000
The Offset 50h	h-53h HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo	Reset Value = 00000000h
The Offset 50h 31	h-53h HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo effect.	Reset Value = 00000000 h teWakeupEnable. Writing a 1 has n
The Offset 50h 31 30:18	HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. We have the termination of terminatio of terminatio of termination of termination of termina	Reset Value = 00000000h teWakeupEnable. Writing a 1 has n Vriting a 1 clears this bit. Writing a 0
The Offset 50h 31 30:18 17	HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. W has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. W Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange 0 = Disabled; 1 = Enabled.	Reset Value = 00000000 teWakeupEnable. Writing a 1 has n Vriting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect. as a remote wakeup event.
The Offset 50H 31 30:18 17 16	HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Whas no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. Write: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange	Reset Value = 00000000 teWakeupEnable. Writing a 1 has n Vriting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect. as a remote wakeup event.
The Offset 501 31 30:18 17 16 15	HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemoreffect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. We has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. We has no effect. Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable.	Reset Value = 00000000 teWakeupEnable. Writing a 1 has n Vriting a 1 clears this bit. Writing a 0 Vriting a 0 has no effect. as a remote wakeup event. Writing a 0 has no effect. valid if NoOverCurrentProtection an
The Offset 50H 31 30:18 17 16 15 15 14:2	HcRhStatus Register (R/W) ClearRemoteWakeupEnable (Write Only): Writing a 1 to this bit clears DeviceRemo effect. Reserved: Read/Write 0s. OverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. W has no effect. Read: LocalPowerStatusChange: Not supported. Always read 0. Write: SetGlobalPower: Write a 1 issues a SetGlobalPower command to the ports. V Read: DeviceRemoteWakeupEnable: This bit enables ports' ConnectStatusChange 0 = Disabled; 1 = Enabled. Write = SetRemoteWakeupEnable: Writing a 1 sets DeviceRemoteWakeupEnable. V Reserved: Read/Write 0s. OverCurrentIndicator: This bit reflects the state of the OVRCUR pin. This field is only	Reset Value = 00000000 teWakeupEnable. Writing a 1 has n Vriting a 1 clears this bit. Writing a 0 <u>Vriting a 0 has no effect.</u> as a remote wakeup event. <u>Writing a 0 has no effect.</u> valid if NoOverCurrentProtection an ent condition.

GeodeTM CS5530A

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description			
Offset 54	h-57h HcRhPortStatus[1] Register (R/W)	Reset Value = 00000628h		
31:21	Reserved: Read/Write 0s.			
20	PortResetStatusChange: This bit indicates that the port reset signal has completed. 0 = Port reset is not complete; 1 = Port reset is complete.			
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect.			
18	PortSuspendStatusChange: This bit indicates the completion of the selective resume sequence for the port. 0 = Port is no resumed; 1 = Port resume is complete.			
17	PortEnableStatusChange: This bit indicates that the port has been disabled due to a hardware event (cleared PortEnableStatus). 0 = Port has not been disabled; 1 = PortEnableStatus has been cleared.			
16	 ConnectStatusChange: This bit indicates a connect or disconnect event has been detected. Writing a 1 clears this bit. Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware detection of connect/disconnect event. If DeviceRemoveable is set, this bit resets to 1. 			
15:10	Reserved: Read/Write 0s.			
9	Read: LowSpeedDeviceAttached: This bit defines the speed (and bud idle) of the a CurrentConnectStatus is set. 0 = Full Speed device; 1 = Low Speed device.	attached device. It is only valid when		
	Write: ClearPortPower: Writing a 1 clears PortPowerStatus. Writing a 0 has no effect	ct.		
8	Read: PortPowerStatus: This bit reflects the power state of the port regardless of the power is off; 1 = Port power is on.	ne power switching mode. 0 = Port		
	Note: If NoPowerSwitching is set, this bit is always read as 1.			
	Write: SetPortPower: Writing a 1 sets PortPowerStatus. Writing a 0 has no effect.			
7:5	Reserved: Read/Write 0s.			
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset signal is active. Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no effect.			
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR pin dedicated to this port. This field is onl valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set. 0 = No over-current condition; 1 = O current condition.			
	Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence for the	ne port. Writing a 0 has no effect.		
2	Read: PortSuspendStatus: 0 = Port is not suspended; 1 = Port is selectively suspended;			
	Write: SetPortSuspend: Writing a 1 sets PortSuspendStatus. Writing a 0 has no eff	ect.		
1	Read: PortEnableStatus: 0 = Port disabled; 1 = Port enabled.			
	Write: SetPortEnable: Writing a 1 sets PortEnableStatus. Writing a 0 has no effect.			
0	Read: CurrentConnectStatus: 0 = No device connected; 1 = Device connected.			
	Note: If DeviceRemoveable is set (not removable) this bit is always 1.			
	Write: ClearPortEnable: Writing 1 a clears PortEnableStatus. Writing a 0 has no effort	ect.		

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description		
Offset 58h	5Bh	HcRhPortStatus[2] Register (R/W)	Reset Value = 01000002h
31:21	Reserved: Read/Write 0s.		
20	PortResetStatusChange: This bit indicates that the port reset signal has completed. 0 = Port reset is not complete; 1 = Port reset is complete.		d. 0 = Port reset is not complete;
19	PortOverCurrentIndicatorChange: This bit is set when OverCurrentIndicator changes. Writing a 1 clears this bit. Writing a 0 has no effect.		
18	PortSuspendStatusChange: This resumed; 1 = Port resume is comp	bit indicates the completion of the selective resur	me sequence for the port. 0 = Port is not
17		it indicates that the port has been disabled due to lisabled; 1 = PortEnableStatus has been cleared.	
16	ConnectStatusChange: This bit indicates a connect or disconnect event has been detected. Writing a 1 clears this bit. Writing a 0 has no effect. 0 = No connect/disconnect event; 1 = Hardware detection of connect/disconnect event. If DeviceRemoveable is set, this bit resets to 1.		5
15:10	Reserved: Read/Write 0s.		
9	•	I: This bit defines the speed (and bud idle) of the ull Speed device; 1 = Low Speed device.	attached device. It is only valid when
	Write: ClearPortPower: Writing a	1 clears PortPowerStatus. Writing a 0 has no effe	ect.
8	Read: PortPowerStatus: This bit power is off; 1 = Port power is on. Note: If NoPowerSwitching is set,	reflects the power state of the port regardless of t this bit is always read as 1.	the power switching mode. 0 = Port
	Write: SetPortPower: Writing a 1	sets PortPowerStatus. Writing a 0 has no effect.	
7:5	Reserved: Read/Write 0s.		
4	Read: PortResetStatus: 0 = Port reset signal is not active; 1 = Port reset signal is active. Write: SetPortReset: Writing a 1 sets PortResetStatus. Writing a 0 has no effect.		active.
3	Read: PortOverCurrentIndicator: This bit reflects the state of the OVRCUR pin dedicated to this port. This field is only valid if NoOverCurrentProtection is cleared and OverCurrentProtectionMode is set. 0 = No over-current condition; 1 = Over current condition. Write: ClearPortSuspend: Writing a 1 initiates the selective resume sequence for the port. Writing a 0 has no effect.		0 = No over-current condition; 1 = Over
2		ort is not suspended; 1 = Port is selectively suspe	
_	•	1 sets PortSuspendStatus. Writing a 0 has no ei	
1	Read: PortEnableStatus: 0 = Por Write: SetPortEnable: Writing a 1	t disabled; 1 = Port enabled. sets PortEnableStatus. Writing a 0 has no effect	
0	6	= No device connected; 1 = Device connected.	
		(not removable) this bit is always 1.	
	Write: ClearPortEnable: Writing 1	a clears PortEnableStatus. Writing a 0 has no el	ffect.
Note: This	register is reset by the UsbReset s	late.	
Offset 5Ch	-5Fh	Reserved	Reset Value = 00000000h
Offset 60h	٩Fh	Reserved	Reset Value = xxh

Table 4-26. USB BAR+Memory Offset xxh: USB Controller Registers (Continued)

Bit	Description			
Offset 10	00h-103h	HceControl Register (R/W)	Reset Value = 00000000h	
31:9	Reserved: Read/Write 0s.			
8	A20State: Indicates current s GateA20Sequence is active.			
7	-	12Active: Indicates a positive transition on IRQ12 from keyboard controller occurred. Software writes this bit to 1 to ar it (set it to 0); a 0 write has no effect.		
6		Q1Active: Indicates a positive transition on IRQ1 from keyboard controller occurred. Software writes this bit to 1 to clear (set it to 0); a 0 write has no effect.		
5	GateA20Sequence: Set by H of any value other than D1h.	teA20Sequence: Set by HC when a data value of D1h is written to I/O port 64h. Cleared by HC on write to I/O port 64h any value other than D1h.		
4		ernallRQEn: When set to 1, IRQ1 and IRQ12 from the keyboard controller cause an emulation interrupt. The function trolled by this bit is independent of the setting of the EmulationEnable bit in this register.		
3		IRQEn: When set, the HC generates IRQ1 or IRQ12 as long as the OutputFull bit in HceStatus is set to 1. If the AuxOutput- Full bit of HceStatus is 0, IRQ1 is generated: if 1, then an IRQ12 is generated.		
2	CharacterPending: When se set to 0.	t, an emulation interrupt will be generated when the	OutputFull bit of the HceStatus register is	
1	EmulationInterrupt (Read O	nly): This bit is a static decode of the emulation inter	rrupt condition.	
0		to 1 the HC is enabled for legacy emulation and will or IRQ12 when appropriate. The HC also generates a are.	0	
Note: Th	nis register is used to enable and	control the emulation hardware and report various s	status information.	
Offset 10	94h-107h	HceInput Register (R/W)	Reset Value = 000000xxh	
31:8	Reserved: Read/Write 0s.			
7:0	InputData: This register holds	s data written to I/O ports 60h and 64h.		
Note: Th		of the legacy Input Buffer register.		
Offset 10	98h-10Bh	HceOutput Register (R/W)	Reset Value = 000000xxh	
31:8	Reserved: Read/Write 0s.			
7:0	OutputData: This register ho	sts data that is returned when an I/O read of port 60	h is performed by application software.	
	is register is the emulation side are.	of the legacy Output Buffer register where keyboard	and mouse data is to be written by soft-	
Offset 10	Ch-10Fh	HceStatus Register (R/W)	Reset Value = 00000000h	
31:8	Reserved: Read/Write 0s.			
7	Parity: Indicates parity error of	on keyboard/mouse data.		
6	Timeout: Used to indicate a t	ime-out		
5	AuxOutputFull: IRQ12 is ass	serted whenever this bit is set to 1 and OutputFull is	set to 1 and the IRQEn bit is set.	
4	Inhibit Switch: This bit reflect	ts the state of the keyboard inhibit switch and is set i	f the keyboard is NOT inhibited.	
3	CmdData: The HC will set thi	s bit to 0 on an I/O write to port 60h and on an I/O w	rite to port 64h the HC will set this bit to ²	
2	Flag: Nominally used as a sy	stem flag by software to indicate a warm or cold boo	t.	
1		InputFull: Except for the case of a Gate A20 sequence, this bit is set to 1 on an I/O write to address 60h or 64h. While this bit is set to 1 and emulation is enabled, an emulation interrupt condition exists.		
0	OutputFull: The HC will set this bit to 0 on a read of I/O port 60h. If IRQEn is set and AuxOutputFull is set to 0 then an IRC is generated as long as this bit is set to 1. If IRQEn is set and AuxOutputFull is set to 1 then and IRQ12 will be generated long as this bit is set to 1. While this bit is 0 and CharacterPending in HceControl is set to 1, an emulation interrupt cond tion exists.			
	tion exists.			

4.5 CS5530A ISA LEGACY I/O REGISTER SPACE

The bit formats for the ISA Legacy I/O Registers plus two chipset-specific configuration registers used for interrupt mapping in the CS5530A are given in this section. These registers reside in the ISA I/O address space in the address range from 000h to FFFh and are accessed through typical input/output instructions (i.e., CPU direct R/W) with the designated I/O port address and 8-bit data. The registers are separated into the following categories:

- DMA Channel Control Registers, see Table 4-27
- DMA Page Registers, see Table 4-28

- Programmable Interval Timer Registers, see Table 4-29
- Programmable Interrupt Controller Registers, see Table 4-30
- Keyboard Controller Registers, see Table 4-31
- Real Time Clock Registers, see Table 4-32
- Miscellaneous Registers, see Table 4-33 (includes 4D0h and 4D1h Interrupt Edge/Level Select Registers and ACPI Timer Count Register at I/O Port 121Ch)

Table 4-27. DMA Channel Control Registers

Bit	Description	
I/O Port 00	0h (R/W) DMA Channel 0 Address Register	
Written as	two successive bytes, byte 0, 1.	
I/O Port 00	1h (R/W) DMA Channel 0 Transfer Count Register	
Written as	two successive bytes, byte 0, 1.	
I/O Port 00	2h (R/W) DMA Channel 1 Address Register	
	two successive bytes, byte 0, 1.	
I/O Port 00		
	two successive bytes, byte 0, 1.	
I/O Port 00		
	two successive bytes, byte 0, 1.	
I/O Port 00		
Written as	two successive bytes, byte 0, 1.	
I/O Port 00	6h (R/W) DMA Channel 3 Address Register	
Written as	two successive bytes, byte 0, 1.	
I/O Port 00	7h (R/W) DMA Channel 3 Transfer Count Register	
Written as	two successive bytes, byte 0, 1.	
I/O Port 00	8h (R/W)	
Read	DMA Status Register, Channels 3:0	
7	Channel 3 Request: Request pending? 0 = No; 1 = Yes.	
6	Channel 2 Request: Request pending? 0 = No; 1 = Yes.	
5	Channel 1 Request: Request pending? 0 = No; 1 = Yes.	
4	Channel 0 Request: Request pending? 0 = No; 1 = Yes.	
3	Channel 3 Terminal Count: TC reached? 0 = No; 1 = Yes.	
2	Channel 2 Terminal Count: TC reached? 0 = No; 1 = Yes.	
1	Channel 1 Terminal Count: TC reached? 0 = No; 1 = Yes.	
0	0 Channel 0 Terminal Count: TC reached? 0 = No; 1 = Yes.	
Write	Write DMA Command Register, Channels 3:0	
7	DACK Sense: 0 = Active high; 1 = Active low.	
6	DREQ Sense: 0 = Active high; 1 = Active low.	
5	Write Selection: 0 = Late write; 1 = Extended write.	
4	Priority Mode: 0 = Fixed; 1 = Rotating.	
3	Timing Mode: 0 = Normal; 1 = Compressed.	
2	Channels 3 through 0: 0 = Disable; 1 = Enable.	
1:0	Reserved: Set to 0.	

Table 4-27. DMA Channel Control Registers (Continued)

Bit	Description			
I/O Port 0	09h (WO)	Software DMA Request Register, Channels 3:0		
7:3	Reserved: Set to 0.			
2	2 Reserved: Set to 0.			
1:0 Channel Number Request Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.				
Note: Software DMA is not supported.				
I/O Port 0	0Ah (R/W)	DMA Channel Mask Register, Channels 3:0		
7:3	7:3 Reserved: Set to 0.			
2		Not masked; 1 = Masked.		
1:0	Channel Number M	lask Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.		
I/O Port 0	0Bh (WO)	DMA Channel Mode Register, Channels 3:0		
7:6	Transfer Mode: 00 =	= Demand; 01 = Single; 10 = Block; 11 = Cascade.		
5	Address Direction:	: 0 = Increment; 1 = Decrement.		
4	Auto-initialize: 0 =			
3:2		= Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.		
1:0	Channel Number M	Iode Select: 00 = Channel 0; 01 = Channel 1; 10 = Channel 2; 11 = Channel 3.		
I/O Port 0	0Ch (WO)	DMA Clear Byte Pointer Command, Channels 3:0		
I/O Port 0	0Dh (WO)	DMA Master Clear Command, Channels 3:0		
I/O Port 0	0Eh (WO)	DMA Clear Mask Register Command, Channels 3:0		
I/O Port 0	0Fh (WO)	DMA Write Mask Register Command, Channels 3:0		
I/O Port 0	C0h (R/W)	DMA Channel 4 Address Register		
Not used.				
I/O Port 0	C2h (R/W)	DMA Channel 4 Transfer Count Register		
Not used.		-		
Not useu.		-		
	0C4h (R/W)			
I/O Port (C4h (R/W) address bytes 1 and 0.	DMA Channel 5 Address Register		
I/O Port (Memory a	address bytes 1 and 0.	DMA Channel 5 Address Register		
I/O Port (Memory a	· · ·	DMA Channel 5 Address Register		
I/O Port (Memory a I/O Port (Transfer o	address bytes 1 and 0. C6h (R/W)	DMA Channel 5 Address Register		
I/O Port (Memory a I/O Port (Transfer c I/O Port (address bytes 1 and 0. C6h (R/W) ount bytes 1 and 0	DMA Channel 5 Address Register DMA Channel 5 Transfer Count Register		
I/O Port (Memory a I/O Port (Transfer c I/O Port (Memory a	Address bytes 1 and 0. C6h (R/W) ount bytes 1 and 0 C8h (R/W)	DMA Channel 5 Address Register DMA Channel 5 Transfer Count Register		
I/O Port (Memory a I/O Port (Transfer c I/O Port (Memory a I/O Port (address bytes 1 and 0. C6h (R/W) ount bytes 1 and 0 C8h (R/W) address bytes 1 and 0.	DMA Channel 5 Address Register DMA Channel 5 Transfer Count Register DMA Channel 6 Address Register		
I/O Port (Memory a I/O Port (Transfer c I/O Port (Memory a I/O Port (Transfer c	Address bytes 1 and 0. C6h (R/W) ount bytes 1 and 0 C8h (R/W) Address bytes 1 and 0. CAh (R/W)	DMA Channel 5 Address Register DMA Channel 5 Transfer Count Register DMA Channel 6 Address Register		

∢
0
S
ŝ
ŝ
S
C
Σ
Ð
σ
0
Û

	Table 4-27. DMA Channel Control Registers (Continued)
Bit	Description
I/O Port 00	CEh (R/W) DMA Channel 7 Transfer Count Register
Transfer co	unt bytes 1 and 0.
I/O Port 0	D0h (R/W)
Read	DMA Status Register, Channels 7:4
7	Channel 7 Request: Request pending? 0 = No; 1 = Yes.
6	Channel 6 Request: Request pending? 0 = No; 1 = Yes.
5	Channel 5 Request: Request pending? 0 = No; 1 = Yes.
4	Undefined
3	Channel 7 Terminal Count: TC reached? 0 = No; 1 = Yes.
2	Channel 6 Terminal Count: TC reached? 0 = No; 1 = Yes.
1	Channel 5 Terminal Count: TC reached? 0 = No; 1 = Yes.
0	Undefined
Write	DMA Command Register, Channels 7:4
7	DACK Sense: 0 = Active high; 1 = Active low.
6	DREQ Sense: 0 = Active high; 1 = Active low.
5	Write Selection: 0 = Late write; 1 = Extended write.
4	Priority Mode: 0 = Fixed; 1 = Rotating.
3	Timing Mode: 0 = Normal; 1 = Compressed.
2	Channels 7 through 4: 0 = Disable; 1 = Enable.
1:0	Reserved: Set to 0.
I/O Port 0	D2h (WO) Software DMA Request Register, Channels 7:4
7:3	Reserved: Set to 0.
2	Request Type: 0 = Reset; 1 = Set.
1:0	Channel Number Request Select: 00 = Illegal; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.
	Note: Software DMA is not supported
I/O Port 0	D4h (R/W) DMA Channel Mask Register, Channels 7:0
7:3	Reserved: Set to 0.
2	Channel Mask: 0 = Not masked; 1 = Masked.
1:0	Channel Number Mask Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.
I/O Port 0	D6h (WO) DMA Channel Mode Register, Channels 7:4
7:6	Transfer Mode: 00 = Demand; 01 = Single; 10 = Block; 11 = Cascade.
5	Address Direction: 0 = Increment; 1 = Decrement.
4	Auto-initialize: 0 = Disabled; 1 = Enable.
3:2	Transfer Type: 00 = Verify; 01 = Memory read; 10 = Memory write; 11 = Reserved.
1:0	Channel Number Mode Select: 00 = Channel 4; 01 = Channel 5; 10 = Channel 6; 11 = Channel 7.
	Channel 4 must be programmed in cascade mode. This mode is not the default.
I/O Port 0	D8h (WO) DMA Clear Byte Pointer Command, Channels 7:4
I/O Port 0	DAh (WO) DMA Master Clear Command, Channels 7:4
I/O Port 0	DCh (WO) DMA Clear Mask Register Command, Channels 7:4

I/O Port 0DEh (WO)

DMA Write Mask Register Command, Channels 7:4

G
Ð
0
Ō.
Ø
-
≤
-
0
S
CS5
CS55
CS553
CS5530

Table 4-28. DMA Page Registers

	1	
Bit	Description	
I/O Port 081h (R/W)		DMA Channel 2 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	32h (R/W)	DMA Channel 3 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	33h (R/W)	DMA Channel 1 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	37h (R/W)	DMA Channel 0 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	39h (R/W)	DMA Channel 6 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	BAh (R/W)	DMA Channel 7 Low Page Register
Address bi	ts [23:16] (byte 2)	
I/O Port 08	Bh (R/W)	DMA Channel 5 Low Page Register
Address bi	ts [23:16] (byte 2).	
I/O Port 08	BFh (R/W)	ISA Refresh Low Page Register
Refresh ad	ldress.	
I/O Port 48	81h (R/W)	DMA Channel 2 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 081h.
I/O Port 48	32h (R/W)	DMA Channel 3 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 082h.
I/O Port 48	33h (R/W)	DMA Channel 1 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 083h.
I/O Port 48	87h (R/W)	DMA Channel 0 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 087h.
I/O Port 48	39h (R/W)	DMA Channel 6 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 089h.
I/O Port 48	BAh (R/W)	DMA Channel 7 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 08Ah.
I/O Port 48	Bh (R/W)	DMA Channel 5 High Page Register
Address bi	ts [31:24] (byte 3)	Note: This register is reset to 00h on any access to Port 08Bh.

Register Descriptions (Continued)

Bit	Description	
I/O Port 04	l0h	
Write	PIT Timer 0 Counter	
7:0	Counter Value	
Read	PIT Timer 0 Status	
7	Counter Output: State of counter output signal.	
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.	
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.	
3:1	Current Counter Mode: 0-5.	
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).	
/O Port 04	l1h	
Write	PIT Timer 1 Counter (Refresh)	
7:0	Counter Value	
Read	PIT Timer 1 Status (Refresh)	
7	Counter Output: State of counter output signal.	
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.	
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.	
3:1	Current Counter Mode: 0-5.	
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).	
I/O Port 04	l2h	
Write	PIT Timer 2 Counter (Speaker)	
7:0	Counter Value	
Read	PIT Timer 2 Status (Speaker)	
7	Counter Output: State of counter output signal.	
6	Counter Loaded: Last count written is loaded? 0 = Yes; 1 = No.	
5:4	Current Read/Write Mode: 00 = Counter latch command; 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.	
3:1	Current Counter Mode: 0-5.	
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).	
I/O Port 04	I3h (R/W) PIT Mode Control Word Register	
7:6	Counter Select: 00 = Counter 0; 01 = Counter 1; 10 = Counter 2; 11 = Read-back command (Note 1).	
5:4	Current Read/Write Mode: 00 = Counter latch command (Note 2); 01 = R/W LSB only; 10 = R/W MSB only; 11 = R/W LSB, followed by MSB.	
3:1	Current Counter Mode: 0-5.	
0	BCD Mode: 0 = Binary; 1 = BCD (binary coded decimal).	
I	f bits [7:6] = 11: Register functions as Read Status Command Bit 5 = Latch Count, Bit 4 = Latch Status, Bit 3 = Select Counter 2, Bit 2 = Select Counter 1, Bit 1 = Select Counter 0, and Bit D = Reserved	
	f bits [5:4] = 00: Register functions as Counter Latch Command	

Register Descriptions (Continued)

Table 4-30. Programmable Interrupt Controller Registers

Bit	Description		
I/O Port (t 020h / 0A0h (WO) Master / Slave PIC IWC1		
7:5	Reserved: Set to 0.		
4	Reserved: Set to 1.		
3	Trigger Mode: 0 = Edge; 1 = Level.		
2	Vector Address Interval: 0 = 8-byte intervals; 1 = 4-byte intervals.		
1	Reserved: Set to 0 (cascade mode).		
0	Reserved: Set to 1 (ICW4 must be programmed).		
I/O Port (t 021h / 0A1h (WO) Master / Slave PIC ICW2		
	(after ICW1 is written)		
7:3	A[7:3]: Address lines [7:3] for base vector for interrupt controller.		
2:0	Reserved: Set to 0.		
I/O Port (t 021h / 0A1h (WO) Master / Slave PIC ICW3 (after ICW2 is written)		
Master P	PIC ICW3		
7:0	Cascade IRQ: Must be 04h.		
Slave PI	IC ICW3		
7:0	Slave ID: Must be 02h.		
I/O Port (t 021h / 0A1h (WO) Master / Slave PIC ICW4 (after ICW3 is written)		
7:5	Reserved: Set to 0.		
4	Special Fully Nested Mode: 0 = Disable; 1 = Enable.		
	This function is not implemented and should always be disabled (i.e., set this bit to 0).		
3:2	Reserved: Set to 0.		
1	Auto EOI: 0 = Normal EOI; 1 = Auto EOI.		
0	Reserved: Set to 1 (8086/8088 mode).		
I/O Port (t 021h / 0A1h (R/W) Master / Slave PIC OCW1 (except immediately after ICW1 is written)		
7	IRQ7 / IRQ15 Mask: 0 = Not Masked; 1 = Mask.		
6	IRQ6 / IRQ14 Mask: 0 = Not Masked; 1 = Mask.		
5	IRQ5 / IRQ13 Mask: 0 = Not Masked; 1 = Mask.		
4	IRQ4 / IRQ12 Mask: 0 = Not Masked; 1 = Mask.		
3			
	IRQ3 / IRQ11 Mask: 0 = Not Masked; 1 = Mask.		
2	IRQ3 / IRQ11 Mask: 0 = Not Masked; 1 = Mask. IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask.		
2	IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask.		
2 1 0	IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask.IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask.		
2 1 0 I/O Port (IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask. IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. t 020h / 0A0h (WO) Master / Slave PIC OCW2		
2 1 0	IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask. IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IQ0 / OA0h (WO) Master / Slave PIC OCW2 Rotate/EOI Codes 000 = Clear rotate in Auto EOI mode 000 = Clear rotate in Auto EOI mode 100 = Set rotate in Auto EOI mode 001 = Non-specific EOI 101 = Rotate on non-specific EOI command 010 = No operation 110 = Set priority command (bits [2:0] must be valid)	e valid)	
2 1 0 I/O Port (IRQ2 / IRQ10 Mask: 0 = Not Masked; 1 = Mask. IRQ1 / IRQ9 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. IRQ0 / IRQ8 Mask: 0 = Not Masked; 1 = Mask. t 020h / 0A0h (WO) Master / Slave PIC OCW2 Rotate/EOI Codes 000 = Clear rotate in Auto EOI mode 100 = Set rotate in Auto EOI mode 001 = Non-specific EOI 101 = Rotate on non-specific EOI command 010 = No operation 110 = Set priority command (bits [2:0] must be valid)	e valid)	

Table 4-30. Programmable Interrupt Controller Registers (Continued)

Bit	Description		
I/O Port (020h / 0A0h (WO)	Master / Slave PIC OCW3	
7	Reserved: Set to 0.		
6:5	Special Mask Mode		
	00 = No operation	10 = Reset Special Mask Mode	
	01 = No operation	11 = Set Special Mask Mode	
4	Reserved: Set to 0.		
3	Reserved: Set to 1.		
2	Reserved: Set to 0. Poll Command at this address is not supported.		
1:0	Register Read Mode		
	00 = No operation	10 = Read interrupt request register on next read of Port 20h	
	01 = No operation	11 = Read interrupt service register on next read of Port 20h	
I/O Port (020h / 0A0h (RO) Master /	Slave PIC Interrupt Request and Service Registers for OCW3 Commands	
		for OCW3 Commands	
Interrupt	Request Register		
7	IRQ7 / IRQ15 Pending: 0 = Ye	s; 1 = No.	
6	IRQ6 / IRQ14 Pending: 0 = Ye	s; 1 = No.	
5	IRQ5 / IRQ13 Pending: 0 = Ye	s; 1 = No.	
4	IRQ4 / IRQ12 Pending: 0 = Ye	s; 1 = No.	
3	IRQ3 / IRQ11 Pending: 0 = Ye	s; 1 = No.	
2	IRQ2 / IRQ10 Pending: 0 = Ye	s; 1 = No.	
1	IRQ1 / IRQ9 Pending: 0 = Yes; 1 = No.		
0	IRQ0 / IRQ8 Pending: 0 = Yes; 1 = No.		
Interrupt	Service Register		
7	IRQ7 / IRQ15 In-Service: 0 = 1	No; 1 = Yes.	
6	IRQ6 / IRQ14 In-Service: 0 = 1	No; 1 = Yes.	
5	IRQ5 / IRQ13 In-Service: 0 = No; 1 = Yes.		
4	IRQ4 / IRQ12 In-Service: 0 = No; 1 = Yes.		
3	IRQ3 / IRQ11 In-Service: 0 = 1	No; 1 = Yes.	
2	IRQ2 / IRQ10 In-Service: 0 = 1	No; 1 = Yes.	
1	IRQ1 / IRQ9 In-Service: 0 = N	o; 1 = Yes.	
0	IRQ0 / IRQ8 In-Service: 0 = N	o; 1 = Yes.	
	e function of this register is set wi		

Register Descriptions (Continued)

Table 4-31. Keyboard Controller Registers

Bit Description

I/O Port 060h (R/W) External Keyboard Controller Data Register

Keyboard Controller Data Register: All accesses to this port are passed to the ISA bus. If the fast keyboard gate A20 and reset features are enabled through bit 7 of the ROM/AT Logic Control Register (F0 Index 52h[7]), the respective sequences of writes to this port assert the A20M# pin or cause a warm CPU reset.

I/O Port	061h (R/W)	Port B Control Register	Reset Value = 00x01100b
7	PERR#/SERR# Statu 0 = No; 1 = Yes.	s (Read Only): Was a PCI bus error (PERR#/SERR#) asserte	ed by a PCI device or by the CS5530A
	This bit can only be se	et if ERR_EN (bit 2) is set 0. This bit is set 0 after a write to ER	RR_EN with a 1 or after reset.
6	IOCHK# Status (Rea	d Only): Is an I/O device reporting an error to the CS5530A?	0 = No; 1 = Yes.
	This bit can only be se	et if IOCHK_EN (bit 3) is set 0. This bit is set 0 after a write to	IOCHK_EN with a 1 or after reset.
5	PIT OUT2 State (Rea	d Only): This bit reflects the current status of the PIT Counter	r 2 (OUT2).
4	Toggle (Read Only):	This bit toggles on every falling edge of Counter 1 (OUT1).	
3	 IOCHK Enable: 0 = Generates an NMI if IOCHK# is driven low by an I/O device to report an error. Note that NMI is under SMI contained and the second sec		
2	PERR#/SERR# Enab 0 = Enable; 1 = Disab	le: Generates an NMI if PERR#/SERR# is driven active to rep le	port an error.
1	PIT Counter2 (SPKR speaker.): 0 = Forces Counter 2 output (OUT2) to zero; 1 = Allows Cou	unter 2 output (OUT2) to pass to the
0	PIT Counter2 Enable	: 0 = Sets GATE2 input low; 1 = Sets GATE2 input high.	
I/O Port)62h (R/W)	External Keyboard Controller Mailbox Register	
		gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]).	rt 062h/066h decode is enabled throug
	e Decoue Control Regist		
I/O Port	064h (R/W)	External Keyboard Controller Command Register	If the fact keybeard gate A20 and read
I/O Port (Keyboar features a port asse	0 064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r a warm CPU reset.	, .
I/O Port (Keyboar features a port asse I/O Port (D64h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus D66h (R/W)	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r a warm CPU reset. External Keyboard Controller Mailbox Register	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar	D64h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus D66h (R/W)	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]).	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0.	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]).	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertio	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W)	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask.	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r the a warm CPU reset. External Keyboard Controller Mailbox Register rgister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable.	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. I_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset.	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit	264h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 266h (R/W) d Controller Mailbox Re e Decode Control Regist 292h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the r is a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. I_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset.	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit	D64h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus D66h (R/W) d Controller Mailbox Re e Decode Control Regist D92h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared Description	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the rea warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Porer 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset. Table 4-32. Real-Time Clock Registers RTC Address Register	respective sequences of writes to this
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit I/O Port (064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared Description 070h (WO) NMI Mask: 0 = Enable	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the rea warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Porer 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset. Table 4-32. Real-Time Clock Registers RTC Address Register	respective sequences of writes to this rt 062h/066h decode is enabled throug Reset Value = 02h
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit I/O Port (7 6:0	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared Description 070h (WO) NMI Mask: 0 = Enable RTC Register Index:	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the rea warm CPU reset. External Keyboard Controller Mailbox Register rigister: Accesses to this port will assert KBROMCS# if the Por er 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset. Table 4-32. Real-Time Clock Registers RTC Address Register e; 1 = Mask.	respective sequences of writes to this rt 062h/066h decode is enabled throug Reset Value = 02h
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit I/O Port (7 6:0 Note: Th	064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared Description 070h (WO) NMI Mask: 0 = Enable RTC Register Index:	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the rea warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Porer 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset. Table 4-32. Real-Time Clock Registers RTC Address Register e; 1 = Mask. A write of this register sends the data out on the ISA bus and	respective sequences of writes to this rt 062h/066h decode is enabled throug Reset Value = 02h
I/O Port (Keyboar features a port asse I/O Port (Keyboar bit 7 of th I/O Port (7:2 1 0 Bit I/O Port (7 6:0 Note: Th I/O Port (064h (R/W) d Controller Command are enabled through bit 7 rt the A20M# pin or caus 066h (R/W) d Controller Mailbox Re e Decode Control Regist 092h Reserved: Set to 0. A20M# SMI Assertion Fast CPU Reset: WM This bit must be cleared Description 070h (WO) NMI Mask: 0 = Enable RTC Register Index: ais register is shadowed v 071h (R/W)	Register: All accesses to this port are passed to the ISA bus. of the ROM/AT Logic Control Register (F0 Index 52h[7]), the rate a warm CPU reset. External Keyboard Controller Mailbox Register gister: Accesses to this port will assert KBROMCS# if the Port or 2 (F0 Index 5Bh[7]). Port A Control Register (R/W) n: Assert A20M#. 0 = Enable mask; 1 = Disable mask. 1_RST SMI is asserted to the BIOS. 0 = Disable; 1 = Enable. ed before the generation of another reset. Table 4-32. Real-Time Clock Registers RTC Address Register e; 1 = Mask. A write of this register sends the data out on the ISA bus and within the CS5530A and is read through the RTC Shadow Reg	respective sequences of writes to this rt 062h/066h decode is enabled throug Reset Value = 02h also causes RTCALE to be triggered. gister (F0 Index BBh).

Table 4-33. Miscellaneous Registers

Bit Description

I/O Ports 170h-177h/376h

Secondary IDE Registers (R/W)

When the local IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to operate according to their configuration rather than generating standard ISA bus cycles.

I/O Ports 1F0h-1F7h/3F6h

Primary IDE Registers (R/W)

When the local IDE functions are enabled, reads or writes to these registers cause the local IDE interface signals to operate according to their configuration rather than generating standard ISA bus cycles.

I/O Port 4	00h Interrupt Edge/Level Select Register 1 (R/W)	Reset Value = 00h		
7	IRQ7 Edge or Level Select: Selects PIC IRQ7 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
6	IRQ6 Edge or Level Select: Selects PIC IRQ6 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
5	IRQ5 Edge or Level Select: Selects PIC IRQ5 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
4	IRQ4 Edge or Level Select: Selects PIC IRQ4 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
3	IRQ3 Edge or Level Select: Selects PIC IRQ3 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
2	Reserved: Set to 0.			
1	IRQ1 Edge or Level Select: Selects PIC IRQ1 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
0	Reserved: Set to 0.			
Notes: 1.	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.			
2.	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share	ed).		
I/O Port 4	01h Interrupt Edge/Level Select Register 2 (R/W)	Reset Value = 00h		
7	IRQ15 Edge or Level Select: Selects PIC IRQ15 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)		
6	IRQ14 Edge or Level Select: Selects PIC IRQ14 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)		
5	Reserved: Set to 0.			
4	IRQ12 Edge or Level Select: Selects PIC IRQ12 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)		
3	IRQ11 Edge or Level Select: Selects PIC IRQ11 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)		
2	IRQ10 Edge or Level Select: Selects PIC IRQ10 sensitivity configuration. 0 = Edge; 1 = Level. (Note	s 1 and 2)		
1	IRQ9 Edge or Level Select: Selects PIC IRQ9 sensitivity configuration. 0 = Edge; 1 = Level. (Notes 1	l and 2)		
0	Reserved: Set to 0.			
Notes: 1.	If ICW1 - bit 3 in the PIC is set as level, it overrides this setting.			
2.	This bit is provided to configure a PCI interrupt mapped to IRQ[x] on the PIC as level-sensitive (share	ed).		
I/O Port 12	ACPI Timer Count Register (RO) Reset	Value = 00FFFFFCh		
(3.579545 2.343 seco Top level S	 JNT (Read Only): This read-only register provides the current value for the ACPI timer. The timer coun MHz). If SMI generation is enabled via F0 Index 83h[5], an SMI is generated when the MSB toggles. The nds. MI status is reported at F1BAR+Memory Offset 00h/02h[0]. el SMI status is reported is at F0 Index 87h/F7h[0]. 			
31:24	Reserved: Always returns 0.			

23:0 **Counter**

Note: The ACPI Timer Count Register is also accessible through F1BAR+Offset 1Ch.

4.6 V-ACPI I/O REGISTER SPACE

The register space designated as V-ACPI I/O does not physically exist in the CS5530A. ACPI is supported in the CS5530A by virtualizing this register space, called V-ACPI. In order for ACPI to be supported, the V-ACPI VSA module must be included in the BIOS. The register descriptions that follow, are supplied here for reference only.

Fixed Feature Space registers are required to be implemented by all ACPI-compatible hardware. The Fixed Feature registers in the VSA/ACPI solution are mapped to normal I/O space starting at offset AC00h; however, the designer can relocate this register space at compile time, hence are hereafter referred to as ACPI_BASE. Registers within V-ACPI (Virtualized ACPI) I/O space must only be accessed on their defined boundaries. For example, byte aligned registers must not be accessed via WORD I/O instructions, WORD aligned registers must not be accessed as DWORD I/O instructions, etc.

The V-ACPI I/O Register Space can be broken up into major blocks:

- PM Event Block 1A (PM1A_EVT_BLK)
- PM Event Block 1A Control (PM1A_CNT_BLK)
- Processor Register Block (P_BLK)
- Command Block (CMD_BLK)
- Test/Setup Block (TST/SETUP_BLK)
- General Purpose Enable 0 Block (GPE0_BLK)

PM1A_EVT_BLK is 32-bit aligned and contains two 16-bit registers, PM1A_STS and PM1A_EN.

PM1A_CNT_BLK is 32-bit aligned and contains one 16-bit register, PM1A_CNT. PM1A_CNT contains the Fixed Feature control bits used for various power management

enables and as communication flags between $\ensuremath{\mathsf{BIOS}}$ and the $\ensuremath{\mathsf{ACPI}}\xspace$ OS.

P_BLK is 32-bit aligned (one register block per processor) and contains two registers P_CNT and P_LVL2. P_LVL3 is currently not supported.

- P_CNT (Processor Control) 16-bit register, Controls process duty cycle via CPU clock throttling.
 DUTY_WIDTH = 3 (can be widened)
 DUTY_OFFSET = 0
- P_LVL2 (Enter C2 Power State) 8-bit, read only register. When read, causes the processor to enter C2 power state.

CMD_BLK contains one 8-bit register SMI_CMD which interprets and processes the ACPI commands (defined in Fixed ACPI Description Table, refer to ACPI Specification, Section 5.2.5).

TST/SETUP_BLK is provided by the VSA technology code and contains two registers, SETUP_IDX and SETUP_DATA for the purpose of configuring the CS5530A. Specifically, this pair of registers enables system software to map GPIO pins on the CS5530A to PM1A_STS and GPE0_STS register bits.

GPE0_BLK has registers used to enable system software to configure GPIO (General Purpose I/O) pins to generate SCI interrupts. GPE0_BLK is a 32-bit block aligned on a 4byte boundary. It contains two 16-bit registers, GPE0_STS and GPE0_EN, each of which must be configured by the BIOS POST. In order for a GPE0_STS bit to generate an SCI, the corresponding enable bit in GPE0_EN must be set.

Table 4-34 gives the bit formats of the V-ACPI I/O registers.

Bit	Description			
ACPI_BA	SE 00h-03h	P_CNT — Processo	r Control Register (R/W)	Reset Value = 00000000h
31:5	Reserved: Always 0.			
4	THT_EN: Enables thro	ttling of the clock based on th	e CLK_VAL field.	
3	Reserved: Always 0.			
2:0	CLK_VAL: Clock thrott	ling value. CPU duty cycle =		
	000 = Reserved	010 = 25%	100 = 50%	110 = 75%
	001 = 12.5%	011 = 37.5%	101 = 62.5%	111 = 87.5%
Reading t	SE 04h his 8-bit read only register	P_LVL2 — Enter C2 P	Power State Register (RO) er the C2 power state. Reads of	Reset Value = 00h f P_LVL2 return 0. Writes have no effect
Reading t	SE 04h his 8-bit read only register	P_LVL2 — Enter C2 P	Power State Register (RO)	Reset Value = 00h
ACPI_BA Reading th ACPI_BA ACPI_BA	SE 04h his 8-bit read only register SE 05h	P_LVL2 — Enter C2 P causes the processor to enter Re	Power State Register (RO) er the C2 power state. Reads of	Reset Value = 00h f P_LVL2 return 0. Writes have no effect
Reading the second seco	SE 04h his 8-bit read only register SE 05h SE 06h	P_LVL2 — Enter C2 P causes the processor to enter Re: SMI_CMD — OS/BIOS mands (defined in Fixed ACI	Power State Register (RO) er the C2 power state. Reads of served Requests Register (R/W)	Reset Value = 00h f P_LVL2 return 0. Writes have no effect Reset Value = 00h

Table 4-34. V-ACPI Registers

Table 4-34. V-ACPI Registers (Continued)

Bit	Description	
ACPI_BA	SE 08h-09h PM1A_STS — PM1A Status Register (R/W)	Reset Value = 0000h
15	WAKE_STS: Wake Status - Set when system was in sleep state and an enable	ed wakeup occurs.
14:11	Reserved	
10	RTC_STS: Real Time Clock Status - This bit changes to 1 if an RTC alarm cause wakeup from a sleep state and IRQ8 is asserted by the RTC. Refer to Table 4-3	
9	SLPBTN_STS: Sleep Button Status (Optional) - This bit changes to 1 when the set, an SCI interrupt is generated.	e sleep button is pressed. If SLPBTN_EN is
	This bit must be configured to be set by a GPIO pin using SETUP_IDX values 4-36.	0x10-0x17 in order to be set. Refer to Table
8	is asserted.	
	This bit must be configured to be set by a GPIO pin using SETUP_IDX values 4-36.	UX10-UX17 IN Order to be set. Refer to Table
7:6	Reserved	
5	GBL_STS: Global Status - The BIOS sets GBL_STS to 1 to release its global to same time GBL_STS is set, the BIOS generates an SCI.	ock and return control to the ACPI OS. At th
4	BM_STS: Bus Master Status - This bit is not supported by V-ACPI.	
3:1	Reserved	
0	TMR_STS: ACPI Timer Status - This bit changes to 1 whenever bit 23 of the AC Port 121Ch) changes state. The ACPI OS is responsible for clearing TMR_STS	· · · · ·
	If TMR_EN (ACPI_BASE 0Ah[0] is also set, then a SCI interrupt is asserted.	
lote: Sta	atus bits are "sticky". A write of a one (1) to a given bit location will reset the bit.	
CPI_BA	SE 0Ah-0Bh PM1A_EN — PM1A Enable Register (R/W)	Reset Value = 0000
15:11	Reserved	
10	RTC_EN: Real Time Clock Enable - If set, an SCI is asserted when RTC_STS	changes to 1.
9	SLPBTN_EN: Sleep Button Enable (Optional) - If set, an SCI is asserted when	SLPBTN_STS changes to 1.
8	PWRBTN_EN: Power Button Enable - If set, an SCI is asserted when PWRBT	N_STS changes to 1.
7:6	Reserved	
5	GBL_EN: Global Lock Enable - If set, writing a 1 to GBL_STS causes an SCI t	to be asserted.
4:1	Reserved	
0	TMR_EN: ACPI Timer Enable - If set, an SCI is asserted when bit 23 of the AC Port 121Ch) changes state.	PI timer (F1BAR+Memory Offset 1Ch or I/
ACPI_BAS	SE 0Ch-0Dh PM1A_CNT — PM1A Control Register (R/W)	Reset Value = 0000
15:14	Reserved	
13	SLP_EN (WO): Sleep Enable (Write Only) - Setting this bit causes the system SLP_TYPx. Reads of this bit always return zero.	to enter the sleep state defined by
12:10	SLP_TYPx: Sleep Type - Defines the type of sleep state the system enters wh	en SLP_EN (bit 13) is set.
	000 = Sleep State S0 (Full on)100 = Sleep State S4	
	001 = Sleep State S1101 = Sleep State S5 (Soft010 = Sleep State S2110 = Reserved	011)
	010 = Sleep State S2 110 = Reserved 011 = Reserved 111 = Reserved	
9:3	Reserved	
2	GBL_RLS (WO): Global Lock Release (Write Only) - Used by ACPI OS to raise by ACPI driver to indicate a release of the global lock and the setting of the per Specification, Section 5.2.8).	
1	BM_RLD: This bit is not supported by V-ACPI.	
0	SCI_EN: System Controller Interrupt Enable - Selects whether power manager based on an ACPI_ENABLE/ACPI_DISABLE written to the SMI_CMD port.	nent events are SCI or SMI. Set by hardwar
ACPI_BA	SE 0Eh-0Fh SETUP_IDX — Setup Index Register (R/W)	Reset Value = 0000
SETUP_ID	DX is a 16-bit register that references an internal setting in the VSA (refer to Table en to SETUP_IDX. A write of SETUP_IDX selects the index for a corresponding x values to SETUP_IDX are ignored. If the current value of SETUP_IDX is invalid	4-35). A read of SETUP_IDX returns the la write to SETUP_DATA. Writes of any unde

Register Descriptions (Continued)

Table 4-34. V-ACPI Registers (Continued)

Bit	Description
ACPI_BA	SE 10h-11h GPE0_STS — General Purpose Event 0 Status Register (R/W) Reset Value = 0000h
	set by an external event and cleared by a write of a one to that bit. The GPE0_STS bits are mapped to specific, chipset-resident als using the SETUP_IDX and SETUP_DATA registers. Refer to Tables 4-35 through 4-37.
15	OEM_GPE_S15: Original Equipment Manufacturer General Purpose Event Status Bit 15 - OEM defined.
14	OEM_GPE_S14: Original Equipment Manufacturer General Purpose Event Status Bit 14 - OEM defined.
13	OEM_GPE_S13: Original Equipment Manufacturer General Purpose Event Status Bit 13 - OEM defined.
12	OEM_GPE_S12: Original Equipment Manufacturer General Purpose Event Status Bit 12 - OEM defined.
11	OEM_GPE_S11: Original Equipment Manufacturer General Purpose Event Status Bit 11 - OEM defined.
10	OEM_GPE_S10: Original Equipment Manufacturer General Purpose Event Status Bit 10 - OEM defined.
9	OEM_GPE_S09: Original Equipment Manufacturer General Purpose Event Status Bit 9 - OEM defined.
8	OEM_GPE_S08: Original Equipment Manufacturer General Purpose Event Status Bit 8 - OEM defined.
7	OEM_GPE_S07: Original Equipment Manufacturer General Purpose Event Status Bit 7 - OEM defined.
6	OEM_GPE_S06: Original Equipment Manufacturer General Purpose Event Status Bit 6 - OEM defined.
	The recommended mapping for the lid switch input is to use GPIO6. If the recommended mapping is used, this bit (bit 6) needs to be mapped to GPIO6 at boot time via SETUP_IDX and SETUP_DATA. Similarly, the lid switch input needs to be routed to GPIO6 in hardware. If this method is selected, this bit is defined as: LID_STS: Lid Status - Set when lid state changes. If LID_EN (ACPI_BASE 12h[6] is set, a SCI interrupt is asserted. Reset
F	by writing a 1 to this bit. OEM_GPE_S05: Original Equipment Manufacturer General Purpose Event Status Bit 5 - OEM defined.
5	OEM_GPE_S03. Original Equipment Manufacturer General Purpose Event Status Bit 5 - OEM defined.
3	OEM_GPE_S03: Original Equipment Manufacturer General Purpose Event Status Bit 3 - OEM defined.
2	OEM_GPE_S02: Original Equipment Manufacturer General Purpose Event Status Bit 3 - OEM defined.
1	OEM_GPE_S01: Original Equipment Manufacturer General Purpose Event Status Bit 2 - OEM defined.
0	OEM_GPE_S00: Original Equipment Manufacturer General Purpose Event Status Bit 1 - OEM defined.
-	
_	
15	OEM_GPE_E15: Original Equipment Manufacturer General Purpose Event Enable Bit 15 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
14	OEM_GPE_E14: Original Equipment Manufacturer General Purpose Event Enable Bit 14 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
13	OEM_GPE_E13: Original Equipment Manufacturer General Purpose Event Enable Bit 13 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
12	OEM_GPE_E12: Original Equipment Manufacturer General Purpose Event Enable Bit 12 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
11	OEM_GPE_E11: Original Equipment Manufacturer General Purpose Event Enable Bit 11 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
10	OEM_GPE_E10: Original Equipment Manufacturer General Purpose Event Enable Bit 10 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
9	OEM_GPE_E09: Original Equipment Manufacturer General Purpose Event Enable Bit 9 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
8	OEM_GPE_E08: Original Equipment Manufacturer General Purpose Event Enable Bit 8 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
7	OEM_GPE_E07: Original Equipment Manufacturer General Purpose Event Enable Bit 7 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
6	LID_EN: Lid Enable - Enables LID_STS to generate a SCI when set.
5	OEM_GPE_E05: Original Equipment Manufacturer General Purpose Event Enable Bit 5 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
4	OEM_GPE_E04: Original Equipment Manufacturer General Purpose Event Enable Bit 4 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
3	OEM_GPE_E03: Original Equipment Manufacturer General Purpose Event Enable Bit 3 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.
2	OEM_GPE_E02: Original Equipment Manufacturer General Purpose Event Enable Bit 2 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set.

Table 4-34. V-ACPI Registers (Continued)

Bit Description 1 OEM_GPE_E01: Original Equipment Manufacturer General Purpose Event Enable Bit 1 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set. 0 OEM_GPE_E00: Original Equipment Manufacturer General Purpose Event Enable Bit 0 - When set, enables a SCI to be generated when the corresponding GPE0_STS bit is set. ACPI_BASE 14h-17h SETUP_DATA — Setup Data Register (R/W)

During a read operation, SETUP_DATA returns the value of the internal setting specified by the current value in SETUP_IDX (ACPI_ABASE 0Eh-0Fh)

ACPI_BASE 18h-1Fh

Reserved for future V-ACPI Implementations.

Table 4-35. SETUP_IDX Values

Reserved

Index	Operation
0x00	No operation
0x10	Configure GPIO0 to PM1A_STS or GPE0_STS bits
0x11	Configure GPIO1 to PM1A_STS or GPE0_STS bits
0x12	Configure GPIO2 to PM1A_STS or GPE0_STS bits
0x13	Configure GPIO3 to PM1A_STS or GPE0_STS bits
0x14	Configure GPIO4 to PM1A_STS or GPE0_STS bits
0x15	Configure GPIO5 to PM1A_STS or GPE0_STS bits
0x16	Configure GPIO6 to PM1A_STS or GPE0_STS bits
0x17	Configure GPIO7 to PM1A_STS or GPE0_STS bits
0x30	Configure IRQ0 to wakeup system
0x31	Configure IRQ1 to wakeup system
0x32	Do not use – Reserved for cascade interrupt
0x33	Configure IRQ3 to wakeup system
0x34	Configure IRQ4 to wakeup system
0x35	Configure IRQ5 to wakeup system
0x36	Configure IRQ6 to wakeup system
0x37	Configure IRQ7 to wakeup system
0x38	Configure IRQ8 to wakeup system (Defaults to RTC_STS in PM1A_STS)
0x39	Configure IRQ9 to wakeup system.
0x3A	Configure IRQ10 to wakeup system.
0x3B	Configure IRQ11 to wakeup system
0x3C	Configure IRQ12 to wakeup system
0x3D	Do not use – Reserved for math coprocessor
0x3E	Configure IRQ14 to wakeup system
0x3F	Configure IRQ15 to wakeup system
0x40	Generate GBL_STS – Sets the GLB_STS bit and generates a SCI to the OS
0x41	Configure IRQ to be used for SCI
0x42	Enable reads of ACPI registers
0x43	Do atomic I/O sequence
0x50	Video power
0x60	Soft SMI AX = 6000 emulation
0x61	Soft SMI AX = 6001 emulation
0x62	Soft SMI AX = 6002 emulation
0x63	Soft SMI AX = 6003 emulation
0x64	Audio power control

Reset Value = 00h

Table 4-36. GPIO Mapping (0x10-0x17)

SETUP_ DATA	Function			
xx Value				
0x00	No mapping – Do not use this GPIO pin			
0x08	Assign GPIOx to PWRBTN_STS bit in PM1A_STS			
0x09	Assign GPIOx to SLPBTN_STS in PM1A_STS			
0x10	Assign GPIOx to bit 0 in GPE0_STS register			
0x11	Assign GPIOx to bit 1 in GPE0_STS register			
0x12	Assign GPIOx to bit 2 in GPE0_STS register			
0x13	Assign GPIOx to bit 3 in GPE0_STS register			
0x14	Assign GPIOx to bit 4 in GPE0_STS register			
0x15	Assign GPIOx to bit 5 in GPE0_STS register			
0x16	Assign GPIOx to bit 6 in GPE0_STS register			
0x17	Assign GPIOx to bit 7 in GPE0_STS register			
0x18	Assign GPIOx to bit 8 in GPE0_STS register			
0x19	Assign GPIOx to bit 9 in GPE0_STS register			
0x1A	Assign GPIOx to bit 10 in GPE0_STS register			
0x1B	Assign GPIOx to bit 11 in GPE0_STS register			
0x1C	Assign GPIOx to bit 12 in GPE0_STS register			
0x1D	Assign GPIOx to bit 13 in GPE0_STS register			
0x1E	Assign GPIOx to bit 14 in GPE0_STS register			
0x1F	Assign GPIOx to bit 15 in GPE0_STS register			
v Value (v	values may be ORed together to get the desired combination of features)			
0x01	Falling edge			
0x02	Rising edge			
0x04	Power button			
0x08	Reserved			
Note: For	GPIO mapping, a value of 0000zyxx is used where:			
	a runtime/wake indicator			
	the edge to be used = a bit in either PM1A_STS or GPE0_STS			
	en using V-ACPI both edges of GPIO6 can be sensed. When using the CS5530A, GPIO6 provides additional hardware that			
	bles the chipset to generate an SMI on both the rising and falling edges of the input signal.			

Table 4-37. IRQ Wakeup Status Mapping (0x30-0x3F)

SETUP_ DATA	Function
0	Do not wakeup on IRQ activity.
0x0a	Assign IRQ Wake to bit 10 in PM1A_STS register
0x10	Assign IRQ Wake to bit 0 in GPE0_STS register
0x11	Assign IRQ Wake to bit 1 in GPE0_STS register
0x12	Assign IRQ Wake to bit 2 in GPE0_STS register
0x13	Assign IRQ Wake to bit 3 in GPE0_STS register
0x14	Assign IRQ Wake to bit 4 in GPE0_STS register
0x15	Assign IRQ Wake to bit 5 in GPE0_STS register
0x16	Assign IRQ Wake to bit 6 in GPE0_STS register
0x17	Assign IRQ Wake to bit 7 in GPE0_STS register
0x18	Assign IRQ Wake to bit 8 in GPE0_STS register
0x19	Assign IRQ Wake to bit 9 in GPE0_STS register
0x1A	Assign IRQ Wake to bit 10 in GPE0_STS register
0x1B	Assign IRQ Wake to bit 11 in GPE0_STS register
0x1C	Assign IRQ Wake to bit 12 in GPE0_STS register
0x1D	Assign IRQ Wake to bit 13 in GPE0_STS register
0x1E	Assign IRQ Wake to bit 14 in GPE0_STS register
0x1F	Assign IRQ Wake to bit 15 in GPE0_STS register
and	en the ability to wakeup on an IRQ is desired use Index 0x31 through 0x3F. This will allow sensing of interrupts while sleeping waking of the system when activity occurs. The desired GPE0 Status bit will only be set if the system is sleeping and a wake int occurs. The system will only wake if the status bit is enabled in the corresponding enable register.

IRQ8 (RTC) is assigned to the RTC_STS bit in the PM1A_STS register by default and should **NOT** be changed.

For enabling and selection of the GPE0 Status bit to be set when Wake on IRQ Activity is desired, use the SETUP_DATA values listed above.

Table 4-38. Commands (0x41-0x43, and 0x50)

Index	Function		
0x41	Configure IRQ to be used for SCI: When mapping the SCI interrupt SETUP_IDX contains the number of the IRQ to be used for the SCI. Valid values are 3-7, 9-12, and 14-15. Invalid values will not change the assignment of the SCI IRQ. The default value for the SCI IRQ is 9.		
0x42	Enable Reads of ACPI Registers: Prior to the issuance of this command only WRITES can be performed to the V-ACPI Fixed feature registers. This command MUST be issued to enable reading of the registers. This is to prevent the User Def hook on NON-ACPI systems from interfering with system functions.		
0x43	Do Atomic I/O Sequence: This command allows a sequence of I/O operations to be done with no interruption. Certain SuperI/O chips must receive unlock codes with NO intervening I/O. In addition other SuperI/O chips do not allow I/O to devices while in configuration mode. This command will insure that I/O operations are completed without interruption. The address of a sequence of I/O commands is placed in the SETUP_DATA register. The command sequence will then be pro cessed immediately.		
	The I/O command sequence consists of two parts: the signature/length block and the I/O block. There is only one signa- ture/length block. There may be one or more I/O blocks.		
	The signature block consists of four DWORDs (see Table 4-39).		
	The I/O block consists of four bytes followed by three DWORDs (see Table 4-40).		
0x50	Video Power: This command will control the power to the SoftVGA. If SETUP_DATA is written with a 0, power will be turne off. If a 1 is written, power will be turned on.		

Register Descriptions (Continued)

Table 4-39. Signature/Length Block for 0x43

Byte Offset	Value
0	Signature: Always 0x00000070
4	Length: The length of the entire buffer including the signature block in bytes.
8	Reserved: Set to 0
12	Reserved: Set to 0

Bvte Offset Description BYTE: Operation Type. 0 1 = Read 2 = Write3 = Read/And/Or/Write 4 = Define index and data ports In addition, values may be OR'ed in to the upper two bits of this byte to indicate that special functions are desired. 0x80 = Do not perform this operation (convert to NO-OP). 0x40 = This is an index operation. BYTE: Reserved set to 0 1 2 BYTE: I/O Length - Determines whether a BYTE, WORD or DWORD operation is performed. 1 = BYTE operation 2 = WORD operation 3 = DWORD operation If BYTE 0 is a 4, then this field is used to indicate the size of the index write. 3 BYTE: Reserved set to 0 4 DWORD: I/O Address - This is the address in the I/O space to be used. It is always a WORD value. If this is a define index/data port operation, this DWORD contains the I/O address of the index port. If this is an index operation, other than define, this DWORD contains the value to be written to the index port. 8 DWORD: I/O Data - The meaning depends on the operation type. Read = This is where the data read from the I/O port will be placed. Write = This is the data to write to the I/O port. Read/AND/OR/Write = This is the data that will be ANDed with the data read from the I/O port. Define index/data port - This DWORD contains the I/O address of the data port. DWORD: OR Data - This field is only used in a Read/AND/OR/Write operation. It contains the data that will be OR'ed after 12 the data read was AND'ed with the previous field. After the OR is done, the data will be re-written to the I/O port. Note: In all cases if the data called for is shorter than the field, the data will be stored or retrieved from the least significant portion of the DWORD.

Table 4-40. I/O Block for 0x43

Soft SMI AX	SETUP_IDX	SETUP_DATA	
0x6000	0x60	BP register value	
0x6001	0x61	BP register value	
0x6002	0x62	BX register value	
0x6003	0x63	BX register value	
Note: Arbitrary registers cannot be set in ASL code before issuing a soft SMI. These commands provide an I/O interface to allow AUDIO Soft SMIs to be emulated.			

Table 4-42. Audio Power Control (0x64)

Data Value	Action
0	Power codec off and mute output
1	Power codec off, do not mute (allows CD to play)
2	Power codec on and un-mute output
3	Power codec on only
Note: Thi	s command allows control of power to the audio codec as well as control of amplifier muting.

GeodeTM CS5530A

5.0 Electrical Specifications

This section provides information on electrical connections, absolute maximum ratings, recommended operating conditions, and DC/AC characteristics for the Geode CS5530A. All voltage values in the electrical specifications are with respect to V_{SS} unless otherwise noted.

For detailed information on the PCI bus electrical specification refer to Chapter 4 of the PCI Bus Specification, Revision 2.1.

5.1 ELECTRICAL CONNECTIONS

5.1.1 Pull-Up Resistors

Table 5-1 lists the pins that are internally connected to a 20-kohm pull-up resistor. When unused, these inputs do not require connection to an external pull-up resistor.

Table 5-1.	Pins wi	th Weak	Internal	Pull-Up
		III IIVan		

Signal Name	Туре	Pin No.
IOR#	I/O	AE12
IOW#	I/O	AC11
MEMR#	I/O	AE19
MEMW#	I/O	AF20
SBHE#	I/O	AE17
SA[19:0]/ SD[19:0]	I/O	AD10, AE11, AF12, AD11, AE25, AD24, AD22, AE21, AF21, AC20, AD19, AF19, AF4, AF5, AD5, AF6, AC6, AD9, AE6, AD9

5.1.2 Unused Input Pins

All inputs not used by the system designer and not listed in Table 5-1 should be kept at either V_{SS} or V_{DD.} To prevent possible spurious operation, connect active-high inputs to ground through a 20-kohm (±10%) pull-down resistor and active-low inputs to V_{DD} through a 20-kohm (±10%) pull-up resistor.

5.1.3 NC-Designated Pins

Pins designated NC should be left disconnected. Connecting an NC pin to a pull-up resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions.

5.1.4 Power/Ground Connections and Decoupling

Testing and operating the CS5530A requires the use of standard high frequency techniques to reduce parasitic effects. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low-impedance wiring, and by using all of the V_{DD} and V_{SS} pins.

5.2 ABSOLUTE MAXIMUM RATINGS

Table 5-2 lists absolute maximum ratings for the CS5530A. Stresses beyond the listed ratings may cause permanent damage to the device. Exposure to conditions beyond these limits may (1) reduce device reliability and (2) result in premature failure even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings may also result in reduced useful life and reliability These are stress ratings only and do not imply that operation under any conditions other than those listed under Table 5-3 is possible.

5.3 OPERATING CONDITIONS

Table 5-3 lists the recommended operating conditions for the CS5530A.

Table 5-2. Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments
Operating Case Temperature	0	110	°C	Power Applied
Storage Temperature	-65	150	°C	No Bias
Supply Voltage		4.0	V	
Voltage On Any Pin	-0.5	5.5	V	
Input Clamp Current, I _{IK}	-0.5	10	mA	Power Applied
Output Clamp Current, I _{OK}		25	mA	Power Applied

Table 5-3. Operating Conditions

Symbol	Parameter (Note 1)	Min	Max	Units	Comments
т _с	Operating Case Temperature	0	85	°C	
V _{DD}	Supply Voltage	3.14	3.46	V	

1. For video interface specific parameters, refer to Table 5-17 "CRT, TFT/TV and MPEG Display Timing" on page 250.

5.4 DC CHARACTERISTICS

All DC parameters and current measurements in this section were measured under the operating conditions listed in Table 5-3 on page 237, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Units	Comments				
V _{IL}	Low Level Input Voltage (Note 1)									
	8 mA			0.8	V	V _{DD} = 3.14V				
	CLK			0.8						
	IDE			0.8						
	PCI	-0.5		$0.3V_{DD}$						
V _{IH}	High Level Input Voltage (N	High Level Input Voltage (Note 1)								
	8 mA	2.0			V	V _{DD} = 3.14V				
	CLK	2.0								
	IDE	2.0								
	PCI	$0.5V_{DD}$		V _{DD} +0.5						
V _{OL}	Low Level Output Voltage	(Note 1)								
	8 mA			0.4	V	V _{DD} = 3.14V, I _{OL} = 8 mA				
	DOTCLK			0.4		V _{DD} = 3.14V, I _{OL} = 20 mA				
	FP_CLK			0.4		V _{DD} = 3.14V, I _{OL} = 12 mA				
	IDE			0.5		V _{DD} = 3.14V, I _{OL} = 12 mA				
	PCI			0.1V _{DD}		V _{DD} = 3.14V, I _{OL} = 1.5 mA				
	USB			0.3		$R_L = 1.5 \text{ K}\Omega \text{ to } V_{DD}, V_{DD} = 3.46 \text{ V}$				
V _{OH}	High Level Output Voltage (Note 1)									
	8 mA	2.4			V	V _{DD} = 3.14V, I _{OH} = -8 mA				
	DOTCLK	2.4				V _{DD} = 3.14V, I _{OH} = -20 mA				
	FP_CLK	2.4				V _{DD} = 3.14V, I _{OH} = -12 mA				
	IDE	2.4				V _{DD} = 3.14V, I _{OH} = -400 μA				
	PCI	0.9V _{DD}				V _{DD} = 3.14V, I _{OH} = -0.5 mA				
	USB	2.8		V _{DD}		V_{DD} = 3.14V, R_L = 15 K Ω to V_{SS}				
I _{LEAK}	Input Leakage Current Inc	luding Hi-Z Out	put Leak	age (Note 1)		I				
	8 mA, CLK, DOTCLK, FP_CLK, IDE, PCI			+/-10	μΑ	$V_{DD} = V_{DDIO} = 3.46V,$ $V_{PAD} = 0$ to 3.46V, Note 2				
				+/-200		$V_{DD} = V_{DDIO} = 3.46V,$ $V_{PAD} = 3.46$ to 5.5V, Note 2				
I _{PU}	Weak Pull-Up Current (No	te 1)		1		1				
	8 mA			-50	μA	V _{DDIO} = 3.46V, Note 2				

	IDE		-0.5					
	PCI	-0.5			$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$			
I _{OL}	Output Low Current (Note 1)			1				
	8 mA		8	mA	$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$			
	FP_CLK		12					
	IDE		12		$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$			
	PCI	1.5			$V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$			
V _H	Hysteresis Voltage 8 mA, CLK (Note 1)	350		mV	$V_{T+} - V_{T-}$			
V _{DI}	USB - Differential Input Sensitivity	0.2		V	(D+)-(D-) , within V _{CM} , Note 3			
V _{CM}	USB - Differential Common Mode Range	0.8	2.5	V	Includes V _{DI} range			
V_{SE}	USB - Single Ended Receiver Threshold	0.8	2.0	V				
V _{CRS}	USB - Output Signal Crossover Voltage							
	Low Speed	1.3	2.0	V	V _{DD} = 3.14V to 3.46V,			
	Full Speed	1.3	2.0	V	See Figure 5-9 and Figure 5-10 on page 248			
C _{IN}	Input Capacitance (Note 1)							
	8 mA		5	pF	Note 3			
	CLK	5	12					
	IDE		25					
	PCI		10					
C _{OUT}	Output Capacitance - All Digital Drivers		7	pF	Note 3			
. Pins w on pag		able 2-3 "352 PBG	A Pin Assignn	nents - Sc	rted Alphabetically by Signal Nam			
	ith a pull-up always enabled are kage specification does not appl			Neak Inte	rnal Pull-Up" on page 237. Note th			
The lea	and a second and a second application of application of a second application o	, inclusion pu						

Electrical Specifications (Continued)

Output High Current (Note 1)

Parameter

8 mA

FP_CLK

Symbol

I_{OH}

Table 5-4. DC Characteristics (Continued)

Max

-8

-12

Units

mΑ

Comments

 $V_{DD} = V_{DDIO} = V_{DDmin} = 3.14V$

Тур

Min

5.4.1 Definition of System Conditions for Measuring "On" Parameters

The current of the CS5530A is highly dependent on the DCLK (DOT clock). Table 5-5 shows how these factors are controlled when measuring the typical average and abso-

lute maximum CS5530A current parameters. Table 5-6 provides the CS5530A's core, DAC, and PLL DC characteristics during various power states.

Table 5-5. System Conditions Used to Determine CS5530A's Current Used During the "On" State

	System Conditions				
CPU Current Measurement	V _{DD} (Note 1)	DCLK Frequency (Note 2)			
Typical Average	Nominal	50 MHz (Note 3)			
Absolute Maximum	Max	135 MHz (Note 4)			

1. See Table 5-3 on page 237 for nominal and maximum voltages.

- 2. Not all system designs support display modes that require a DCLK of 157 MHz. Therefore, absolute maximum current will not be realized in all system designs.
- 3. A DCLK frequency of 50 MHz is derived by setting the display mode to 800x600x8 bpp at 75 Hz, using a display image of vertical stripes (4-pixel wide) alternating between black and white with power management disabled.
- 4. A DCLK frequency of 157 MHz is derived by setting the display mode to 1280x1024x8 bpp at 85 Hz, using a display image of vertical stripes (1-pixel wide) alternating between black and white with power management disabled.

Symbol	Parameter	Min	Тур	Max	Units	Comments
Core (Note 1)	·	·				
I _{DD_CORE}	Active I _{DD}		145	255	mA	Note 2 and Note 3
I _{DDAI_CORE}	Active Idle I _{DD}		85		mA	Note 4
I _{DDSM_CORE}	Suspend Mode I _{DD}		29		mA	Note 5
I _{DDSS_CORE}	Standby I _{DD}		5.7		mA	Note 6
DAC (Note 1)						
I _{DD_DAC}	Active I _{DD}		60	85	mA	Note 2 and Note 3
I _{DDAI_DAC}	Active Idle I _{DD}		60		mA	Note 4
I _{DDSM_DAC}	Suspend Mode I _{DD}		0.2		mA	Note 5
I _{DDSS_DAC}	Standby I _{DD}		0.2		mA	Note 6
PLL (Note 1)						
I _{DD_PLL}	Active I _{DD}		6	6	mA	
I _{DDAI_PLL}	Active Idle I _{DD}		6		mA	Note 4
I _{DDSM_PLL}	Suspend Mode I _{DD}		0.3		mA	Note 5
IDDSS_PLL	Standby I _{DD}		0.2		mA	Note 6
EXTVREFIN						
IDD_EXTVREFIN	Active I _{DD}			75	μA	
. Outputs un	loaded.		I			
	current is measured under the					
	33 MHz, USBCLK = 48 MHz, rent is measured under the fo			/ID_CLK :	= 133 MH	Ζ.
	33 MHz, USBCLK = 48 MHz,			D_CLK =	0 MHz.	
	current is measured under the					rted:
	33 MHz, USBCLK = 48 MHz, urrent is measured under the					ed.
	33 MHz, USBCLK = 48 MHz,					
	rrent is measured under the fo 0 MHz, USBCLK = 0 MHz, D0					P_3V (stop clock signal) asserted
r GIOLIX =	0 with z , $0000 Cert = 0$ with z , $0000 Cert = 0$	3LIX – 0 WII 12, a			11 12.	

Electrical Specifications (Continued)

5.5 AC CHARACTERISTICS

The following tables list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. The rising-clock-edge reference level, V_{REF} and other reference levels are shown in Table 5-7. Input or output signals must cross these levels during testing.

Input setup and hold times are specified minimums that define the smallest acceptable sampling window for which a synchronous input signal must be stable for correct operation.

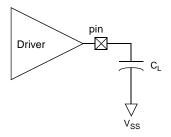
Table 5-7. Drive Level and Measurement Pointsfor AC Characteristics

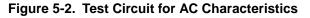
Symbol	Voltage (V)
V _{REF}	1.5
V _{DD}	3.14
V _{SS}	0

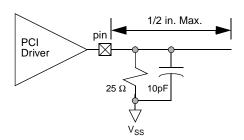
Table 5-8. AC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments (Note 1)
t _{SU}	Input Setup Time to PCICLK	7			ns	See Figures 5-1 and 5-2 on
t _H	Input Hold Time to PCICLK	0			ns	page 243
t _{LH}	Low to High Propagation Delay (Referenced to PCICLK, Note 2)					
	PCI	2		11	ns	See Figure 5-2 on page 243 and Figure 5-3 on page 244 (also known as t _{VAL})
t _{HL}	High to Low Propagation Delay	(Reference	ced to PCI	CLK, Note	e 2)	
	PCI	2		11	ns	See Figure 5-2 on page 243 and Figure 5-4 on page 244 (also known as t _{VAL})
t _{RISE/FALL} Rising/Falling Edge Rate						
	IDE			1.25	V/ns	See Figures 5-1 and 5-2 on page 243, Note 3

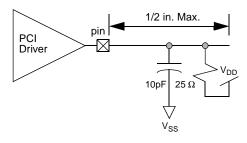
1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

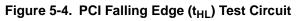

2. Pins with this buffer type are listed in Table 2-3 "352 PBGA Pin Assignments - Sorted Alphabetically by Signal Name" on page 19.


3. Not 100% tested.


Electrical Specifications (Continued) t_{FALL} t_{RISE} V_{DD} $V_{REF = 50\%} V_{DD}$ CLK V_{SS} t_{LH}/t_{HL} Max t_{LH}/t_{HL} Min Valid Output n. Valid Output n+1 OUTPUTS $V_{\text{REF} = 50\%} V_{\text{DD}}$ t_{SU} Min t_H Min V_{DD} — - V_{REF = 50%} V_{DD} Valid Input -INPUTS V_{SS} Legend: t_{LH}/t_{HL} Max = Maximum Output Delay Specification t_{LH}/t_{HL} Min = Minimum Output Delay Specification t_{SU} Min = Minimum Input Setup Specification t_H Min = Minimum Input Hold Specification

Note: See Table 5-7 "Drive Level and Measurement Points for AC Characteristics" on page 242 for V_{DD} , V_{SS} , and V_{REF} values.


Figure 5-1. Test Measurements for AC Characteristics



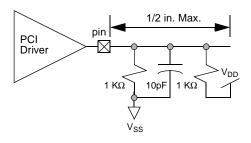


Figure 5-5. PCI Slew Rate Test Circuit

	Table	5-9. Cloc	k and Res	et Specifi	cations	
Symbol	Parameter	Min	Max	Duty Cycle	Unit	Comments (Note 1)
Output Sig	gnals					
	DCLK Frequency	25	157.5	40/60	MHz	Note 2
	CLK_32K Frequency	32.	768	50/50	kHz	Note 3
	ISACLK Frequency		8.33333		MHz	
Input Sigr	nals					
	CLK_14MHZ Frequency	14.3	1818	45/55	MHz	
	USBCLK Frequency	4	18		MHz	
	TVCLK Frequency		27		MHz	
	VID_CLK Frequency		135		MHz	
t _{CYC}	PCICLK Cycle Time	30			ns	Note 4
t _{HIGH}	PCICLK High Time	11			ns	
t _{LOW}	PCICLK Low Time	11			ns	
	PCICLK Slew Rate	1	4		V/ns	See Figure 5-1 on page 243 and Figure 5-5 on page 244 (known as slew _r /slew _f), Note 5 and Note 6
	PCI_RST# Slew Rate	50			mV/ns	Rising edge only (deasser- tion), Note 6
cies. Ty 3. CLK_32 4. Frequer design. 5. Rise an minimu	ase duty cycle. Duty cycle is a f pical jitter < 650 ps peak-to-pea 2K jitter = period of CLK_14MH2 ncy of operation is from DC to 33 nd fall times are specified in term m peak-to-peak portion of the c 0% tested.	ik. CLK_14 Z. CLK_32k 3 MHz but a ns of the ed	MHZ input ji < output frec tt a single fix ge rate mea	tter < 500 p quency = C aed frequen asured in V/	os peak-to-p LK_14MHZ cy. Operatio /ns. This sle	beak. /436.95621. on below 20 MHz is guaranteed
	0.5 V _{DD} . 0.4 V _{DD} . 0.3 V _{DD} . Fig		CYC tLO 0.2 V 3.3V PCIC		(n	 4 V _{DD} , peak-to-peak ninimum)

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
f _{DCLK}	DCLK Clock Operating Frequency	25		157.5	MHz	Also known as CRT clock
f _{REF}	Input Reference Frequency		14.318		MHz	
t _{RISE/FALL}	Output Clock Rise/Fall Time			2	ns	@ 25 MHz
	Jitter, Peak-to-Peak	-300		300	ps	
DC	Duty Cycle	40/60		60/40	%	

Table 5-10. DCLK PLL Specifications

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

Table 5-11. CPU Interface Timing

Symbol	Parameter	Min	Max	Units	Comments (Note 1)	
t _{SMI}	Rising PCICLK to SMI#	3	16	ns		
t _{SUSP#}	Rising PCICLK to SUSP#	6	9	ns		
t _{SUSPASetup}	SUSPA# Setup to Rising PCICLK	0		ns		
t _{SUSPAHold}	SUSPA# Hold from Rising PCICLK	3		ns		
	IRQ13 Input	Asynchronous input for IRQ decode.				
	INTR Output	Asynchronous output from IRQ decode.				
	SMI# Output	Asynchrono	ous output from	m SMI decod	e.	

1. All tests, unless otherwise specified, are at $V_{DD} = 3.14V$ to 3.46V, $T_C = 0^{\circ}C$ to 85°C, and $C_L = 50$ pF.

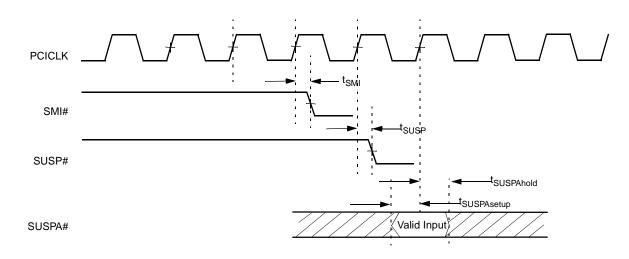
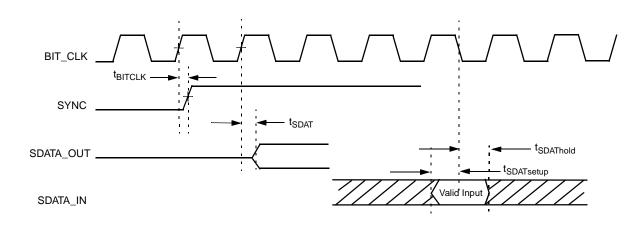


Figure 5-7. CPU Interface Timing


GeodeTM CS5530A

Electrical Specifications (Continued)

Symbol	Parameter	Min	Max	Units	Comments (Note 1)		
t _{BITCLK}	Rising BIT_CLK to SYNC		15	ns			
t _{SDAT}	Rising BIT_CLK to SDATA_OUT		15	ns			
t _{SDATsetup}	SDATA_IN setup to falling BIT_CLK	10		ns			
t _{SDAThold}	SDATA_IN hold from falling BIT_CLK	10		ns			

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

Electrical Specifications (Continued) Table 5-13. USB Timing Symbol Parameter Min Max Unit Comments (Note 1) Full Speed Mode **Rise Time** 4 20 ns t_R Fall Time 4 20 t_F ns Low Speed Mode **Rise Time** t_R 75 ns 300 $C_L = 350 \text{ pF}$ Fall Time 75 t_{F} ns 300 $C_L = 350 \text{ pF}$

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

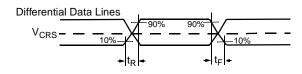


Figure 5-9. USB Timing

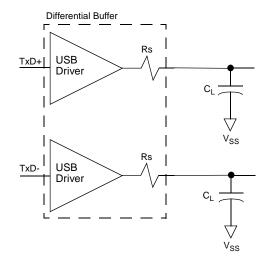


Figure 5-10. USB Test Circuit

GeodeTM CS5530A

5.6 DISPLAY CHARACTERISTICS

The following tables and figures describe the characteristics of the CRT, TFT/TV and MPEG Display interfaces. It is divided into the following categories:

- CRT Display Recommended Operating Conditions
- CRT Display Analog (DAC) Characteristics
- Display Miscellaneous Characteristics

• CRT, TFT/TV and MPEG Display Timing Additionally, Figure 5-13 on page 252 is provided showing a typical video connection diagram.

Symbol	Parameter	Min	Тур	Max	Units	Comments	
AV _{DD}	Power Supply connected to AV_{DD1} , AV_{DD2} and AV_{DD3}	3.14	3.3	3.46	V		
RL	Output Load on each of the pins IOUTR, IOUTG and IOUTB		37.5		Ohms	R1, R2, and R3 as shown in Figure 5-13 on page 252	
I _{OUT}	Output Current on each of the pins IOUTR, IOUTG and IOUTB			21	mA		
R _{SET}	Value of the full-scale adjust resistor connected to IREF		680		Ohms	This resistor should have a 1% tolerance.	
VEXT _{REF}	External voltage reference con- nected to the EXTVREFIN pin		1.235		V		

Table 5-14. CRT Display Recommended Operating Conditions

Table 5-15.	CRT Display	Analog (DAC) Characteristics
		, Allalog (BAO) Ona aotoristios

Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
V _{OM}	Output Voltage			0.735	V	
V _{OC}	Output Current			20	mA	
INL	Integral Linearity Error			+/-1	LSB	
DNL	Differential Linearity Error			+/-1	LSB	
t _{FS}	Full Scale Settling Time			2.5	ns	
	DAC-to-DAC matching			5	%	
	Power Supply Rejection			0.7	%	@ 1 KHz
t _{RISE}	Output Rise Time			3.8	ns	Note 2 and Note 3
t _{FALL}	Output Fall Time			3.8	ns	Note 2 and Note 4

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.

2. Timing measurements are made with a 75 ohm doubly-terminated load, with VEXT_{REF} = 1.235V and R_{SET} = 680 ohms.

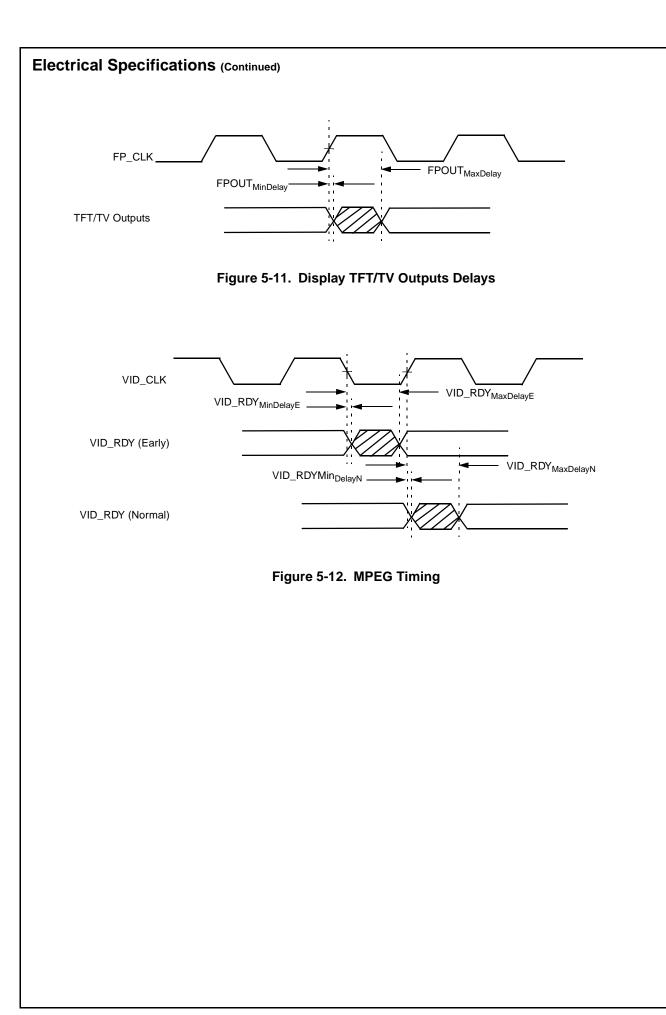
3. 10% to 90% of full-scale transition.

4. Full-scale transition: time from output minimum to maximum, not including clock and data feedthrough.

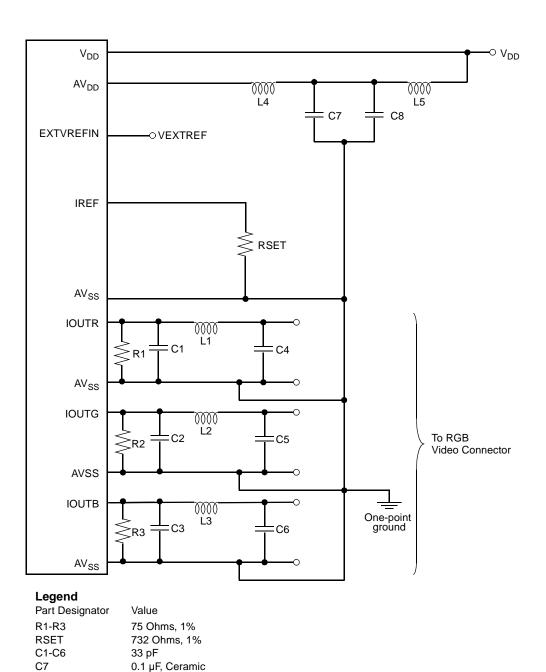
Symbol	Parameter	Min	Тур	Мах	Units	Comments
	White Level Relative to Black	16.74	17.62	18.50	mA	
IAV _{DD}	AV _{DD} Supply Current		60		mA	(Static)

 Table 5-16. Display Miscellaneous Characteristics

Table 5-17. CRT, TFT/TV and MPEG Display Timing


				•		
Symbol	Parameter	Min	Тур	Max	Units	Comments (Note 1)
Setup/Hold Time						
t _{DisplaySetup}	Display Setup to Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	2.2			ns	See Figure 5-1 on page 243.
t _{DisplayHold}	Display Hold from Rising PCLK: VSYNC, HSYNC, ENA_DISP, FP_VSYNC, FP_HSYNC, PIXEL[23:0]	1.0			ns	
t _{VID_VALSetup}	VID_VAL Setup to Rising VID_CLK	3.0			ns	See Figure 5-1 on
t _{VID_VALHold}	VID_VAL Hold from Rising VID_CLK	0.8			ns	page 243.
t _{VID_DATASetup}	VID_DATA Setup to Rising VID_CLK	3.0			ns	See Figure 5-1 on
t _{VID_DATAHold}	VID_DATA Hold from Rising VID_CLK	0.8			ns	page 243, Note 2
Clock Specification						
t _{VID_CLKMin}	VID_CLK Minimum Clock Period	7.4			ns	
Delay Time						
FPOUT _{MinDelay} , FPOUT _{MaxDelay}	TFT/TV Output Delays from FP_CLK: FP_DATA[17:0], FP_HSYNC_OUT, FP_VSYNC_OUT, FP_DISP_ENA_OUT, FP_ENA_VDD, FP_ENA_BKL, FP_CLK_EVEN	0.5		4.5	ns	Note 3
VID_RDY _{MinDelayE} , VID_RDY _{MaxDelayE}	VID_RDY Delay from Falling VID_CLK (early mode)	3.0		10.5	ns	Note 4
VID_RDY _{MinDelayN} , VID_RDY _{MaxDelayN}	VID_RDY delay from rising VID_CLK (normal mode)	3.0		9.5	ns	

1. All tests, unless otherwise specified, are at V_{DD} = 3.14V to 3.46V, T_C = 0°C to 85°C, and C_L = 50 pF.


2. Also applies to PIXEL[23:16] when in 16-bit video mode.

3. All flat panel applications use the falling edge of FP_CLK to latch their data.

4. The mode for VID_RDY (early or normal) is set with bit 25 of the Video Configuration Register (F4BAR+Memory Offset 00h[25]).

GeodeTM CS5530A

L4-L5 (Optional) 600 Ohm Ferrite Bead

2.2 µF, Electrolytic

120 Ohm Ferrite Bead

Figure 5-13. Typical Video Connection Diagram

C8

L1-L3 (Optional)

6.0 Test Mode Information

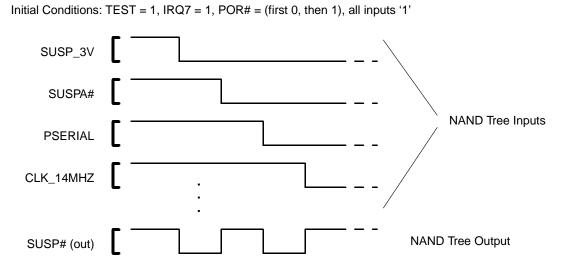
The CS5530A provides two test modes:

- The NAND tree test mode for board-level automatic test equipment (ATE).
- 2) The I/O test mode for system design testing.

6.1 NAND TREE TEST MODE

The NAND tree mode is used to test input and bidirectional pins which will be part of the NAND tree chain. Table 6-1 shows how to set the device for the NAND tree test.

The output of the NAND tree is multiplexed on the SUSP# output (pin K26). After a POR# (pin K24) pulse, all inputs in Table 6-2 on page 254 are initialized to a "1" and then are successively pulled and held to a "0" starting with SUSP_3V (the first input pin in the tree). The output wave-


form on SUSP# will toggle on each input change as shown in Figure 6-1.

POR# is included as an input during the NAND Tree test, after being used to trigger the test first. IRQ7 (pin AD14) and TEST (pin D3) must be held high throughout the test.

Table 6-1. NAND Tree Test Selection	Table 6-1.	NAND	Tree T	est Se	lection
-------------------------------------	------------	------	--------	--------	---------

Signal Name	Pin No.	Setting
POR#	K24	0 -> 1
TEST	D3	1
IRQ7	AD14	1

Example: Beginning of NAND Tree Test Sequence

The following pins are not in the NAND tree: AEN, BALE, CPU_RST, DACK[3:0]#, DACK[7:5]#, DCLK, DDC_SCL, D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, EXTVREFIN, FP_CLK, FP_CLK_EVEN, FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD, FP_HSYNC_OUT, FP_VSYNC_OUT, GPCS#, GPORT_CS#, HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#, IDE_DACK[1:0]#, IDE_IOR[1:0]#, IDE_IOW[1:0]#, IDE_RST#, IOUTB, IOUTG, IOUTR, IREF, IRQ7, ISACLK, KBROMCS#, PC_BEEP, PCI_RST#, PLLTEST, SA_LATCH, SDATA_OUT, SMEMR#/RTCALE, SMEMW#/RTCCS#, SUSP#, SYNC, TEST, VID_RDY, VSYNC_OUT, all NCs, and all analog/digital supplies.

Figure 6-1. NAND Tree Output Waveform

Test Mode Information (Continued)

Signal Name	Pin No.
SUSP_3V	L24
SUSPA#	L24
PSERIAL	L26
CLK_14MHZ	P24
SMI#	P25
INTR	P26
IRQ13	R23
IDE_DATA7	U23
IDE_DATA6	U24
IDE_DATA8	V24
IDE_DATA10	V25
IDE_DATA5	W26
IDE_DATA9	Y25
IDE_DATA11	Y24
IDE_DATA4	AA26
IDE DATA12	AA25
IDE_DATA3	AB26
IDE_DATA1	AB20 AA24
IDE_DATA13	AA24 AB25
IDE_DATA2	AB23 AB24
IDE_DATA2	AC26
IDE_DATA14	AC25
IDE_DATA14	AG23 AB23
IDE_DREQ1	AC24
IDE_DREQ1	AC24 AD26
IDE_IORDY0	AD26 AD25
IDE_IORDY1	AE26
SA14/SD14	AE20 AD24
SA14/SD14 SA15/SD15	AD24 AE25
GPIO0	AE23 AC22
GPIO1	AC22 AE24
GPIO2	AE24 AF25
	AF25 AF24
GPIO3 GPIO4	AF24 AD22
GPIO4 GPIO5	
	AC21
GPIO6	AE23
GPI07	AF23 AE22
SA13/SD13 SA10/SD10	AE22 AC20
DRQ7	AC20 AF22
SA12/SD12	AF22 AE21
SA12/SD12 SA11/SD11	AE21 AF21
SA9/SD9	AD19 AE20
DRQ6 MEMW#	
MEMW#	AF20
	AE19
DRQ5	AD18
SA8/SD8	AF19
DRQ0	AE18
IRQ11	AF18
IRQ14	AC17
IRQ15	AD17
SBHE#	AE17
IRQ12	AF17

	Z. NAND	1
Signal Name	Pin No.	
IRQ10	AE16	
IOCS16#	AF16	
MEMCS16#	AC15	
IRQ4	AE15	
TC	AF15	
IRQ3	AC14	
IRQ8#	AE14	
IRQ6	AF14	
DRQ3	AD13	
IRQ5	AE13	
IRQ1	AF13	
DRQ1	AD12	
IOR#	AE12	
SA17	AF12	
IOW#	AC11	
SA16	AD11	
SA18	AE11	
IOCHRDY	AF11	
SA19	AD10	
DRQ2	AE10	
ZEROWS#	AF10	
SA2/SD2	AD9	
SA0/SD0	AE9	
SA4/SD4	AF6	
SA1/SD1	AE6	
SA6/SD6	AF5	
SA3/SD3	AC6	
IRQ9	AE5	
SA5/SD5	AD5	
SA7/SD7	AF4	
CLK_32K	AE3	
OVER_CUR#	W3	
POWER_EN	V4	
USBCLK	W1	
BIT_CLK	V2	
SDATA_IN	U4	
DDC_SDA	M4	
FP_DATA12	L1	
FP_DATA0	K3	
FP_DATA13	K2	
FP_DATA14	K1	
FP_DATA2	J3	
FP_DATA1	J2	
FP_DATA3	J1	
FP_DATA15	H2	
FP_DATA16	H3	
FP_DATA4	H1	
FP_DATA8	G1	
FP_DATA5	G2	
FP_DATA7	G3	
 FP_DATA6	G4	
FP_DATA9	F1	
FP_DATA17	F3	
FP_DATA10	E2	

Table 6-	2. NAND	Tre	e Test Mode F	Pins
nal Name	Pin No.		Signal Name	Pin No.
IRQ10	AE16		FP DATA11	D1
DCS16#	AF16		 FP_VSYNC	C1
MCS16#	AC15		 FP_HSYNC	C2
IRQ4	AE15		ENA DISP	B1
тс	AF15		TVCLK	B2
IRQ3	AC14		PIXEL0	A1
IRQ8#	AE14		PIXEL3	C4
IRQ6	AF14		PIXEL6	D5
DRQ3	AD13		PIXEL4	B3
IRQ5	AE13		PIXEL1	A2
IRQ1	AF13		PIXEL2	A3
DRQ1	AD12		PIXEL11	C5
IOR#	AE12		PIXEL9	D6
SA17	AF12		PIXEL5	B4
IOW#	AC11		PIXEL7	A4
SA16	AD11		HSYNC	C6
SA18	AE11		VSYNC	B5
CHRDY	AF11		PIXEL13	D7
SA19	AD10		PIXEL14	C7
DRQ2	AE10		PIXEL10	A5
ROWS#	AF10		PIXEL8	B6
A2/SD2	AD9		VID CLK	A6
A0/SD0	AE9		PIXEL17	C8
A4/SD4	AF6		VID VAL	B7
A1/SD1	AE6		PIXEL12	A7
A6/SD6	AF5		PIXEL15	B8
A3/SD3	AC6		PIXEL20	D9
IRQ9	AE5		PIXEL21	C9
A5/SD5	AD5		PIXEL16	A8
A7/SD7	AF4		PIXEL18	B9
LK_32K	AE3		PIXEL19	A9
ER_CUR#	W3		PIXEL23	C10
WER_EN	V4		VID DATA4	D11
ISBCLK	W1		VID DATA3	C11
IT_CLK	V2		PIXEL22	B11
DATA_IN	U4		VID DATA0	A11
DC_SDA	M4		VID_DATA7	C12
_DATA12	L1		VID_DATA6	B12
	K3		VID_DATA5	A12
_ DATA13	K2		VID DATA1	C13
_DATA14	K1		VID_DATA2	B13
P_DATA2	J3		PCLK	A13
DATA1	J2		AD1	D14
DATA3	J1		INTD#	B14
DATA15	H2		INTA#	A14
_DATA16	H3		INTB#	D15
DATA4	H1		INTC#	C15
DATA8	G1		AD3	B15
DATA5	G2		AD0	A15
DATA7	G3		AD2	C16
DATA6	G4		AD5	B16
DATA9	F1		AD7	A16
_DATA17	F3		AD4	C17
DATA10	E2		AD6	B17
		1		1

Signal Name	Pin No.
AD9	A17
AD8	D18
C/BE0#	B18
AD12	A18
AD11	B19
AD10	A19
AD15	A20
AD14	B20
AD13	C20
PAR	A21
C/BE1#	B21
SERR#	A22
PERR#	B22
LOCK#	C22
DEVSEL#	A23
TRDY#	B23
FRAME#	C23
C/BE2#	A24
IRDY#	B24
AD17	A25
AD18	B25
AD16	A26
GNT#	D24
AD21	C25
AD19	B26
AD22	C26
AD20	E24
AD26	D25
C/BE3#	D26
AD23	E25
AD25	G24
STOP#	E26
AD24	F25
AD27	F26
AD28	G25
AD29	G26
AD31	H25
AD30	J24
HOLD_REQ#	H26
REQ#	J25
PCICLK	J26
POR#	K24

www.national.com

Test Mode Information (Continued)

6.2 I/O TEST

This test affects all output and bidirectional pins. To trigger the I/O test, set the TEST and IRQ[3:7] pins according to Table 6-3, while holding POR# low. The test begins when POR# is brought high. Starting with the next rising edge of PCICLK, the states listed in Table 6-4 are entered by all digital output and I/O pins on successive PCICLK pulses:

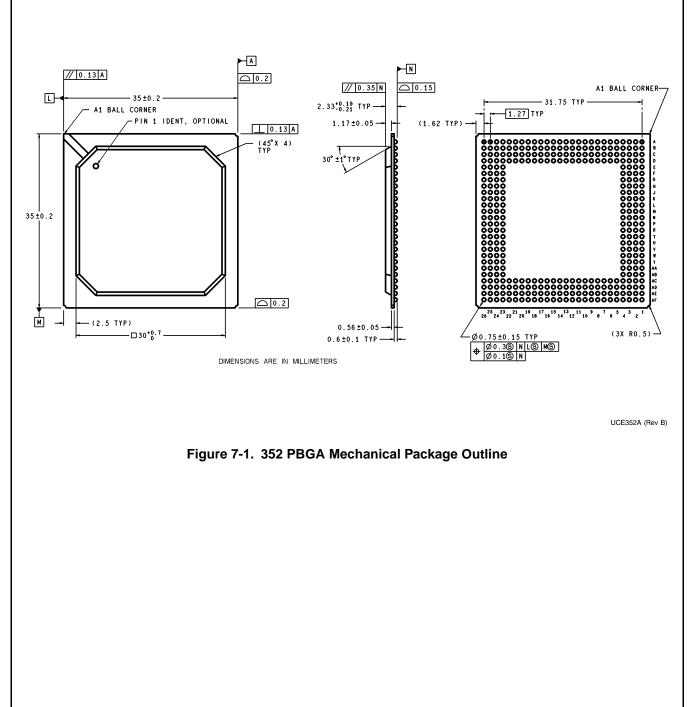
Signal Name	Pin No.	Setting
POR#	K24	Х
TEST	D3	1
IRQ3	AC14	0
IRQ4	AE15	1
IRQ5	AE13	1
IRQ6	AF14	0
IRQ7	AD14	1

Table 6-3. I/O Test Selection

Table 6-4. I/O Test Sequence

Clock #	Output Pin States	
Before 1	Undefined	
1	Floating	
2	High	
3	Low	
4	Floating	
5	Low	
6	High	
7	Floating	
8 and beyond	Undefined	

The following pins are INCLUDED in this test:


- AD[31:0], AEN, BALE, C/BE[3:0]#, CLK_32K, CPU_RST, DACK[7:5,3:0], DDC_SCL, DDC_SDA, DEVSEL#, FP_CLK, FP_CLK_EVEN, FP_DATA[17:0], FP_DISP_ENA_OUT, FP_ENA_BKL, FP_ENA_VDD, FP_HSYNC_OUT, FP_VSYNC_OUT, FRAME#, GPCS#, GPIO[7:0], GPORT_CS#, HOLD_REQ#, HSYNC_OUT, IDE_ADDR[2:0], IDE_CS[1:0]#, IDE_DACK[1:0]#, IDE_DATA[15:0], IDE_IOR[1:0]#, IDE_IOW[1:0]#, IDE_RST#, INTR, IOCHRDY, IOR#, IOW#, IRDY#, ISACLK, KBROMCS#, LOCK#, MEMCS16#, MEMR#, MEMW#, PAR, PCI_RST#, PC_BEEP, PERR#, POWER_EN, REQ#, SA/SD[15:0], SA[19:16], SA_LATCH, SBHE#, SDATA_OUT, SERR#, SMEMR#, SMEMW#, SMI#, STOP#, SUSP#, SUSP_3V, SYNC, TC, TRDY#, VID_RDY, VSYNC_OUT
- **Note:** The SA/SD and SA bus, IOR#, IOW#, MEMR#, MEMW# and SBHE# pins never actually float, because they have internal weak pull-up devices that remain active.

The following pins are EXCLUDED from this test:

- Input-only pins: BIT_CLK, CLK_14MHZ, DRQ[7:5,3:0], ENA_DISP, FP_HSYNC, FP_VSYNC, GNT#, HSYNC, IDE_DREQ[1:0], IDE_IORDY[1:0], INTA#, INTB#, INTC#, INTD#, IOCS16#, IRQ1, IRQ[7:3], IRQ8#, IRQ[15:9], OVER_CUR#, PCICLK, PCLK, PIXEL[23:0], POR#, PSERIAL, SDATA_IN, SUSPA#, TEST, TVCLK, USBCLK, VID_CLK, VID_DATA[7:0], VID_VAL, VSYNC, ZEROWS#.
- USB pins: D+_PORT1, D-_PORT1, D+_PORT2, D-_PORT2, AV_{DD}_USB, AV_{SS}_USB.
- Time-critical output: DCLK.
- Analog pins (including supplies): EXTVREFIN, IOUTB, IOUTG, IOUTR, IREF, PLLAGD, PLLDGN, PLLDVD, PLLTEST, AV_{DDx}, AV_{SSx}.
- Digital supply pins (V_DD, V_SS) and No Connects (NC).

The physical dimensions for the 352 PBGA (Plastic Ball Grid Array) package for the Geode CS5530A are provided in Figure 7-1.

GeodeTM CS5530A

Appendix A Support Documentation

A.1 REVISION HISTORY

This document is a report of the revision/creation process of the architectural specification for the CS5530A I/O Com-

panion. Any revisions (i.e., additions, deletions, parameter corrections, etc.) are recorded in the table(s) below.

Revision # (PDF Date)	Revisions / Comments	
0.1 (4/2/00)	Completed formatting first-pass of spec. Current spec is updated version of CS5530 data book with additional inputs from engineering. Differences between this spec's revision and the CS5530 data book are denoted with a change bar in the margin. Still need to proof-read for "ripple effects" made by engineering changes for next rev.	
0.2 (6/16/00)	Corrections from Issues 1.3.	
0.3 (6/27/00)	Further corrections from Issues 1.3. Partly indexed.	
0.4 (7/5/00)	Corrections from Issues 1.3 and 1.5. Some issues remain to be resolved. Index markers inserted through AT chapter.	
0.5 (7/19/00)	TME/Tech Pubs edits. See document revision 0.5 for revision history.	
0.6 (8/7/00)	TME/Tech Pubs edits. See document revision 0.6 for revision history details.	
0.7(9/18/00)	TME/Tech Pubs/Engr edits. See document revision 0.7 for revision history details.	
	Note: Next revision to include section on "recommended soldering parameters" in Section 7.0 "Physical Dimensions".	
1.0 (11/10/00)	TME/Tech Pubs/Engr edits. See document revision 1.0 for revision history details.	
	Note: Will create separate applications note on "recommended soldering parameters" as opposed to adding as subsection in data book.	
1.1 (5/1/01)	TME/Engr edits. See Table A-2 for details.	
	Note: Will not create separate applications note on "recommended soldering parameters". Applications is fulfilling any customer inquiries with a document supplied by National's Quality Group.	

Table A-1. Revision History

Support Documentation (Continued)

Section	Description
Section 2.0 "Signal De	efinitions"
Section 2.2.2 "Clock Interface"	 Changed last sentence of DCLK signal description on page 23. Did say: "However, system constraints limit DCLK to 150 MHz when DCLK is used as the graphics subsystem clock." Now says: "However, when DCLK is used as the graphics subsystem clock, the Geode processor determines the maximum DCLK frequency."
Section 2.2.11 "Dis- play Interface"	• Changed resistor value in IREF signal description (from 732 ohm to 680 ohm) on page 36.
Section 3.8 "Display S	Subsystem Extensions"
Section 3.8.3 "Video Overlay"	 Added sentence to last paragraph on page 135: — "However, system maximum resolution is not determined by the CS5530A since it is not the source of the graphics data and timings."
	 Section 3.8.5.3 "Flat Panel Support" on page 137 Added subsection titled "Flat Panel Power-Up/Down Sequence".
Section 5.0 "Electrica	I Specifications"
Section 5.5 "AC Char- acteristics"	 Table 5-8 "AC Characteristics" on page 242: — Removed 8 mA, DOTCLK, and FP_CLK t_{LH} and t_{HL} parameters.
	 Table 5-10 "DCLK PLL Specifications" on page 246: — Removed Jitter, Sigma One parameter from table (completely).
	 Table 5-11 "CPU Interface Timing" on page 246: — Changed t_{SMI} max value from 9 ns to 16 ns. — Changed t_{SUSPAHold} min value from 1 ns to 3 ns.
	 Table 5-15 "CRT Display Analog (DAC) Characteristics" on page 249: Added V_{OM} max value of 0.735V. Added V_{OC} max value of 20 mA. Added t_{FS} max value of 2.5 ns. Removed C_{OUT} parameter from table (completely). Changed t_{RISE} max value from 3 to 3.8 ns. Added t_{FALL} max value of 3.8 ns. Changed R_{SET} value in Note 2 from 732 ohms to 680 ohms.
	 Table 5-17 "CRT, TFT/TV and MPEG Display Timing" on page 250: Changed t_{DisplaySetup} min value from 2.5 ns to 2.2 ns. Changed t_{VID_VALSetup} min value from 3.75 ns to 3.0 ns. Changed t_{VID_VALHold} min value from 0 ns to 0.8 ns. Changed t_{VID_DATASetup} min value from 0 ns to 0.8 ns. Changed t_{VID_DATASetup} min value from 0 ns to 0.8 ns. Changed t_{VID_DATAHold} min value from 0 ns to 0.8 ns. Changed t_{VID_CLKMin} parameter description from "VID_CLK Minimum Pulse Width" to "VID_CLK Minimum Clock Period". Changed FPOUT_{MinDelay}, FPOUT_{MaxDelay} min value from 0.1 ns to 0.5 and max value from 5.2 ns to 4.5 ns.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com National Semiconductor Europe Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 87 90 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 Email: nsj.crc@jksmtp.nsc.com

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.